ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第5期
<返回第5期

对辊破碎机层压破碎过程的DEM-MBD联合仿真与试验

DEM-MBD co-simulation and experiment on laminating crushing process of roll crusher

蔡改贫1, 阮 辽1a, 李洋波2,3

(1. 江西理工大学a. 机电工程学院, b. 江西省矿冶机电工程技术研究中心, 江西赣州341000;2. 矿冶科技集团有限公司矿物加工科学与技术国家重点实验室, 北京100160; 

3. 北矿机电科技有限责任公司, 北京100160)


引用格式:蔡改贫, 阮辽, 李洋波. 对辊破碎机层压破碎过程的DEM-MBD联合仿真与试验[J]. 中国粉体技术, 2023, 29(5): 92-100.

CAI G P, RUAN L, LI Y B. DEM-MBD co-simulation and experiment on laminating crushing process of roll crusher[J]. China Powder Science and Technology, 2023, 29(5): 92-100.

DOI:10.13732/j.issn.1008-5548.2023.05.011

收稿日期:2022-12-10,修回日期:2023-06-22,在线出版时间:2023-08-28 11:48。

基金项目:江西省重点研发计划项目,编号:20181ACE50034。

第一作者简介:蔡改贫(1964—),男,教授,博士,博士生导师,研究方向为智能矿山装备技术、智能监控与工业机器人等。E-mail:cgp4821@163.com。


摘要:通过控制合理的入料粒径能够有效提高对辊破碎机层压破碎效率,但在分析物料破碎过程时存在腔内物料不可视、破碎数据难采集等问题。为了提高对辊破碎机的破碎效率,优化其破碎过程的分析方法,采用离散元法(discrete element method,DEM)与多体动力学(multibody dynamics,MBD)建立联合仿真模型,探究对辊破碎机层压破碎过程中物料的破碎规律; 并进行对辊破碎机层压破碎试验,分析不同入料粒径配比时矿石物料的孔隙率对破碎效率的影响,并试验验证联合仿真模型的准确性。结果表明: 对辊破碎机的物料破碎由单颗粒破碎和层压破碎组成,破碎过程分为料层密实、物料破碎和结团排料3个阶段;为提高对辊破碎机破碎效率需要控制入料粒径不小于辊隙的40%,在此条件下,通过混入尺寸大小为入料粒径50%~100%的矿石降低物料孔隙率可以提高破碎效率;DEM-MBD联合仿真与试验结果的碎后粒径分布曲线基本吻合,从而验证建立的联合仿真模型的可靠性。

关键词:对辊破碎机; 离散元法; 层压破碎; 损伤累积; 联合仿真

Abstract:The laminating crushing efficiency of roll crusher can be effectively improved by controlling reasonable feeding grain size, but there are some problems in analyzing the crushing process, such as invisible material in the chamber and difficult to collect crushing data. In order to improve the crushing efficiency of roll crusher and optimize the analysis method of its crushing process, a co-simulation model was established by using discrete element method (DEM) and multibody dynamics (MBD). The crushing law of the material in process of laminating crushing of roll crusher was studied. The lamination crushing test of roll crusher was carried out. The influence of the inlet particle size with different porosity on the crushing efficiency was analyzed and the accuracy of the co-simulation model was verified. The results show that the crushing process of roller crusher consists of single particle crushing and lamination crushing. The crushing process is divided into three stages, compaction of material layer, crushing of material and agglomeration and discharge of material. In order to improve the crushing efficiency of roll crusher, it is necessary to control the feed particle size of not less than 40% of the roll gap. Under this condition, the crushing efficiency can be improved by mixing the ore with the feed particle size of 50%~100% to reduce the porosity. The DEM-MBD co-simulation is in good agreement with the particle size distribution curves of the experimental results, which verifies the reliability of the established co-simulation.

Keywords:roll crusher; discrete element method; laminate crush; damage accumulation; co-simulation


参考文献(References):

[1]段希祥, 肖庆飞. 碎矿与磨矿[M]. 北京: 冶金工业出版社, 2012: 1-5.

DUAN X X, XIAO Q F. Crushing and grinding[M]. Beijing: Metallurgical Industry Press, 2012: 1-5.

[2]夏晓鸥, 沈政昌, 史帅星, 等. 选矿装备[M]. 北京: 冶金工业出版社, 2019: 4-6.

XIA X O, SHEN Z C, SHI S X, et al. Mineral processing equipment[M].Beijing: Metallurgical Industry Press, 2019: 4-6.

[3]JIANG H, ZHOU Y D, ZHANG C H. Interpretation of breakage characteristics of particle beds from confined compression tests[J]. Powder Technology, 2021, 378: 317-326.

[4]刘建远, 应平. 颗粒床压载粉碎对某硫化铜矿石矿物解离的影响[J]. 有色金属(选矿部分), 2018(5): 81-87.

LIU J Y, YING P. Impact of comminution by particle-bed compressive stressing on mineral liberation of a copper sulfide ore[J].Nonferrous Metals(Mineral Processing Section), 2018(5): 81-87.

[5]MÜTZE T. Energy dissipation in particle bed comminution[J]. International Journal of Mineral Processing, 2015, 136: 15-19.

[6]MÜTZE T. Modelling the stress behaviour in particle bed comminution[J]. International Journal of Mineral Processing, 2016, 156: 14-23.

[7]张子龙. 圆锥破碎机层压破碎腔形优化及工艺参数研究[D]. 秦皇岛: 燕山大学, 2019.

ZHANG Z L. Research on optimization of inter-particle breakage crushing chamber and process parameters of cone crusher[D]. Qinhuangdao: Yanshan University, 2019.

[8]WEERASEKARA N S, POWELL M S, CLEARY P W, et al. The contribution of DEM to the science of comminution[J]. Powder Technology, 2013, 248: 3-24.

[9]LISJAK A, GRASSELLI G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(4): 301-314.

[10]ZHOU Q, XU W J, LUBBE R. Multi-scale mechanics of sand based on FEM-DEM coupling method[J]. Powder Technology, 2021, 380: 394-407.

[11]蔡改贫, 宣律伟, 张雪涛, 等. 多尺度内聚颗粒模型破碎过程研究[J]. 岩土力学, 2020, 41(6): 1809-1817.

CAI G P, XUAN L W, ZHANG X T, et al. Investigation into the crushing process in multi-scale cohesive particle model[J]. Rock and Soil Mechanics, 2020, 41(6): 1809-1817.

[12]蔡改贫, 郭晋, 李臣, 等. 异形多级颗粒模型的数值模拟试验与破碎实验[J]. 中国粉体技术, 2019, 25(3): 65-71.

CAI G P, GUO J, LI C, et al. Numerical simulation test and crushing experiment of multi-stage particle models with deferent shape[J]. China Powder Science and Technology, 2019, 25(3):65-71.

[13]BARRIOS G K, HERRERA N J, TORRES S N F, et al. DEM simulation of laboratory-scale jaw crushing of a gold-bearing ore using a particle replacement model[J]. Minerals, 2020, 10(8): 717-733.

[14]ANDRÉ F P, TAVARES L M. Simulating a laboratory-scale cone crusher in DEM using polyhedral particles[J]. Powder Technology, 2020, 372:362-371.

[15]程加远, 任廷志, 张子龙, 等. 基于多体动力学与离散元耦合的惯性圆锥破碎机动态性能研究[J]. 振动与冲击, 2021, 40(8): 98-109.

CHENG J Y, REN T Z, ZHANG Z L, et al. A study on dynamic performance of an inertia cone crusher based on multi-body dynamics and discrete element coupling method[J].Journal of Vibration and Shock, 2021, 40(8): 98-109.

[16]LI Y W, ZHAO L L,HU E Y, et al. Laboratory-scale validation of a DEM model of a toothed double-roll crusher and numerical studies[J]. Powder Technology, 2019, 356: 60-72.

[17]SCHÖNERT K. Modelling of interparticle breakage[J]. International Journal of Mineral Processing,1996, 44(3): 101-115.

[18]TAVARES L M, RODRIGUEZ V A, SOUSANI M, et al. An effective sphere-based model for breakage simulation in DEM[J]. Powder Technology, 2021, 392: 473-488.

[19]BARRIOS G K P, JIMENEZ H N, TAVARES L M. Simulation of particle bed breakage by slow compression and impact using a DEM particle replacement model[J]. Advanced Powder Technology, 2020, 31(7): 2749-2758.

[20]TAVARES L M, CHAGAS A D. A stochastic particle replacement strategy for simulating breakage in DEM[J]. Powder Technology, 2021, 377: 222-232.