ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第5期
<返回第5期

聚苯胺及其复合材料的制备及应用研究进展

Research progress on preparation and application of polyaniline and its composite materials

吴红娥1,2, 费广涛1, 高旭东1, 郭 霄1, 宫欣欣1, 马晓丽1, 王 庆1, 许少辉1

(1. 中国科学院合肥物质科学研究院固体物理研究所, 安徽合肥230031; 2. 安徽工程大学化学与环境工程学院, 安徽芜湖241000)


引用格式:吴红娥, 费广涛, 高旭东, 等. 聚苯胺及其复合材料的制备及应用研究进展[J]. 中国粉体技术, 2023, 29(5): 70-80.WU H E,FEI G T, GAO X D, et al. Research progress on preparation and application of polyaniline and its composite materials[J]. China Powder Science and Technology, 2023, 29(5): 70-80.

DOI:10.13732/j.issn.1008-5548.2023.05.009v

收稿日期:2023-04-29,修回日期:2023-08-17,在线出版时间:2023-08-25 12:03。

基金项目:国家自然科学基金项目,编号:51971210。

第一作者简介:吴红娥(1982—),女,副教授,博士,研究方向为光电材料。E-mail: hongewu@ahpu.edu.cn。

通信作者简介:费广涛(1962—),男,研究员,博士,博士生导师,研究方向为光电材料。E-mail: gtfei@issp.ac.cn。


摘要:针对聚苯胺具有良好的应用前景和商业价值的现状,对聚苯胺及其复合材料的制备方法进行综述,包括化学氧化聚合法、 电化学氧化聚合法、 酶催化聚合法、 乳液聚合法、 原位聚合法和光诱导聚合法等;根据聚苯胺具有较强的导电性能、 优良的环境稳定性、 可调节的氧化态等特点,介绍聚苯胺及其复合材料在吸附材料、 传感器、 超级电容器、 太阳能电池、 电磁屏蔽材料及发光二极管等领域中的应用。指出聚苯胺作为一种重要的导电高分子聚合物,未来的研究重点是通过可控的合成方法与无机半导体粒子形成复合材料,利用聚苯胺的能量传递作用增强无机半导体材料的荧光性能等。

关键词:导电高分子聚合物; 聚苯胺; 复合材料

Abstract:In view of the current situation of polyaniline with good application prospects and commercial value, the preparation methods of polyaniline and its composite materials were reviewed, including chemical oxidative polymerization, electrochemical oxidative polymerization, enzyme-catalyzed polymerization, emulsion polymerization, in-situ polymerization, photo-induced polymerization and so on. According to the characteristics of polyaniline such as strong electrical conductivity, excellent environmental stability and adjustable oxidation state, the applications of polyaniline and its composite materials in the fields of adsorption materials, sensors, supercapacitors, solar cells, electromagnetic shielding materials and light-emitting diodes were introduced. The focus of future research about polyaniline will be to form composites with inorganic semiconductor particles through controllable synthesis methods because of polyaniline as an important conductive polymer. The energy transfer of polyaniline can be used to enhance the fluorescence properties of inorganic semiconductors.

Keywords:conductive polymer; polyaniline; composite materials


参考文献(References):

[1]XIANG Q, YAN R W, GAO G Q, et al. Electrooxidation of methanol on PANI-CeO2@Pt catalysts[J]. Chemistry Select, 2022, 7(45): e202203391.

[2]SHIRAKAWA H, LOUIS E J, MACDIARMID A G,et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene[J]. Journal of the Chemical Society: Chemical Communications, 1977, 16: 578-80.

[3]赵晓明, 孙嘉瑞. 导电聚苯胺的研究进展及其在纺织领域的应用[J]. 纺织科学与工程学报, 2018, 35(1): 153-158.

ZHAO X M, SUN J R. Research progress of conductive polyaniline and its application in textile field[J]. Journal of Textile Science and Engineering, 2018, 35(1): 153-158.

[4]GUO X, FEI G T, SU H, et al. High-performance and reproducible polyaniline nanowire-tubes for removal of Cr(VI) in aqueous solution[J]. Journal of Physical Chemistry C, 2011, 115(5): 1608-1613.

[5]GUO X, FEI G T, SU H, et al. Synthesis of polyaniline micro-nanospheres by a copper(Ⅱ)-catalyzed self-assembly method with superior adsorption capacity of organic dye from aqueous solution[J]. Journal of Materials Chemistry, 2011, 21(24): 8618.

[6]WU H E, WANG Q, FEI G T, et al. Preparation of hollow polyaniline micro-nanospheres and their removal capacity of Cr(VI) from wastewater[J]. Nanoscale Research Letters, 2018, 13(1): 401.

[7]杨杰, 葛雅婕. 导电聚苯胺高分子聚合物在抗静电腈纶中的应用[J]. 炼油与化工, 2011, 22(1): 55-56.

YANG J, GE Y J. Application of conductive ployaniline polymer in antistatic acrylic fiber[J]. Refining and Chemical Industry, 2011, 22(1): 55-56.

[8]DUAN X, DUAN Z, ZHANG Y, et al. Enhanced NH3 sensing performance of polyaniline via a facile morphology modification strategy[J]. Sensors and Actuators: B. Chemical, 2022, 369:132302.

[9]唐劲松, 王宝忱, 王佛松. 聚苯胺的合成、 结构、 性能及应用[J]. 高分子材料科学与工程, 1987, 1: 5-14.

TANG J S, WANG B C, WANG F S. The synthesis structure properties and application of polyaniline[J]. Polymeric Materials Science and Engineering, 1987, 1: 5-14.

[10]于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.

YU Y T, LIU Y J. Research progress in preparation of ferrite-polyaniline absorbing composites by in situ polymerization[J]. Journal of Materials Engineering, 2022, 50(5): 90-99.

[11]ALBDIRY M, AL-NAYILI A. Ternary sulfonated graphene-polyaniline-carbon nanotubes nanocomposites for high performance of supercapacitor electrodes[J]. Polymer Bulletin, 2022, 80(8): 8245-8258.

[12]岳美辰. 3D打印构建聚苯胺复合水凝胶及其力敏传感性能研究[D]. 上海: 东华大学, 2022.

YUE M C. Study on the construction of polyaniline composite hydrogel by 3D printing and its force sensing properties[D]. Shanghai: Donghua University, 2022.

[13]LIU S, HU J Y, WU D S, et al. Preparation of spunlaced viscose PANI-ZnO-GO fiber membrane and its performance of photocatalytic decolorization[J]. Journal of Industrial Textiles, 2022, 51(S5): 7359S-7373S.

[14]SAMADI A, XIE M, LI J L, et al. Polyaniline-based adsorbents for aqueous pollutants removal: a review[J]. Chemical Engineering Journal, 2021, 418: 129425.

[15]KANDPAL R, SHAHADAT M, ALI S W, et al. Material specific enrichment of electroactive microbes on polyaniline-supported anodes in a single chamber multi-anode assembly microbial fuel cell[J]. Material Research Bulletin, 2023, 157: 111983.

[16]YU L, LI D, XU Z Y, et al. Polyaniline coated Pt-CNT as highly stable and active catalyst for catalytic hydrogenation reduction of Cr(VI)[J]. Chemosphere, 2022, 310: 136685.

[17]姚茜, 刘莉, 孟凡帝, 等. 酸掺杂聚苯胺在轻合金防腐涂层中的研究进展[J]. 化工新型材料, 2021, 49(10): 58-62.

YAO Q, LIU L, MENG F D, et al. Progress on acid doped PANI applied in light alloy anticorrosive coating[J]. New Chemical Materials, 2021, 49(10): 58-62.

[18]HASSEN M M, IBRAHIM I M, ABDULLAH O G, et al. Improving photodetector performance of PANI nanofiber by adding rare-earth La2O3 nanoparticles[J]. Applied Physics A: Materials, 2023, 129(2): 135.

[19]XU L, LIU C, MA X, et al. Two-birds-one-stone: flexible PANI film with bionic microstructures for multifunctional sensing of physical and chemical stimuli[J]. Chemical Engineering Journal, 2023, 451: 138820.

[20]贾艺凡, 刘朝辉, 廖梓珺, 等. 导电聚苯胺的聚合方法及应用研究进展[J]. 材料开发与应用, 2016, 31(1): 96-104.

JIA Y F, LIU Z H, LIAO Z J, et al. Progress in preparation and performance of conducting polyaniline[J]. Development and Application of Materials, 2016, 31(1): 97-104.

[21]胡洪超, 舒绪刚, 崔英德. 聚苯胺的合成及机理研究进展[J]. 化工进展, 2016, 35(S1): 195-201.

HU H C, SHU X G, CUI Y D. Progress in synthesis and mechanism of polyaniline[J]. Chemical Industry and Engineering Progress, 2016, 35(S1): 195-201.

[22]MATTOSO L H C, MACDIARMID A G, EPSTEIN A J. Controlled synthesis of high molecular weight polyaniline and poly(o-methoxyaniline)[J]. Synthetic Metals, 1994, 68(1): 1-11.

[23]STEJSKAL J, RIEDE A, HLAVAT D, et al. The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline[J]. Synthetic Metals, 1998, 96(1): 55-61.

[24]NABID M R, SHAMSIANPOUR M, SEDGHI R, et al. Enzyme-catalyzed synthesis of conducting polyaniline nanocomposites with pure and functionalized carbon nanotubes[J]. Chemical Engineering and Technology, 2012, 35(9): 1707-1712.

[25]GE C Y, YANG X G, LI C, et al. Synthesis of polyaniline nanofiber and copolymerization with acrylate through in situ emulsion polymerization[J]. Journal of Appllied Polymer Science, 2012, 123(1): 627-635.

[26]HAN W J, PIAO S H, CHOI H J. Synthesis and electrorheological characteristics of polyaniline@attapulgite nanoparticles via pickering emulsion polymerization[J]. Materials Letters, 2017, 204: 42-44.

[27]ZHAO Z Y, LIU Z H, ZHONG Q S, et al. In situ synthesis of trifluoroacetic acid-doped polyaniline-reduced graphene oxide composites for high-performance all-solid-state supercapacitors[J]. ACS Applied Energy Materials, 2020, 3(9): 8774-8785.

[28]CHAUHAN N P S, JANGID N K, PUNJABI P B. Synthesis and characterization of conducting polyanilines via catalytic oxidative polymerization[J]. International Journal of of Polymeric Materials and Polymeric Biomaterials, 2013, 62(10): 550-555.

[29]BEYGISANGCHIN M, ABDUL RASHID S, SHAFIE S, et al. Preparations, properties, and applications of polyaniline and polyaniline thin films: a review[J]. Polymers, 2021, 13(12): 2003.

[30]ANU-PRATHAP M U, CHAURASIA A K, SAWANT S N, et al. Polyaniline-based highly sensitive microbial biosensor for selective detection of lindane[J]. Analytical Chemistry, 2012, 84(15): 6672-6678.

[31]CHEN S, SUN G. High sensitivity ammonia sensor using a hierarchical polyaniline-poly(ethylene-co-glycidyl methacrylate) nanofibrous composite membrane[J]. ACS Appllied Materials Interfaces, 2013, 5(14): 6473-6477.

[32]SONKER R K, YADAV B C. Development of Fe2O3-PANI nanocomposite thin film based sensor for NO2 detection[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77: 276-281.

[33]GONG X X, FEI G T, FU W B, et al. Flexible strain sensor with high performance based on PANI-PDMS films[J]. Organic Electronics, 2017, 47: 51-56.

[34]PALSANIYA S, NEMADE H B, DASMAHAPATRA A K. Mixed surfactant-mediated synthesis of hierarchical PANI nanorods for an enzymatic glucose biosensor[J]. ACS Applied Polymer Materials, 2019, 1(4): 647-656.

[35]REBELO A R, LIU C, SCHAFER K H, et al. Poly(4-vinylaniline)-polyaniline bilayer-functionalized bacterial cellulose for flexible electrochemical biosensors[J]. Langmuir, 2019, 35(32): 10354-10366.

[36]PARK S H, JEONG J M, KIM S J, et al. Large-area and 3D polyaniline nanoweb film for flexible supercapacitors with high rate capability and long cycle life[J]. ACS Applied Energy Materials, 2020, 3(8): 7746-7755.

[37]DING J N, CHEN P, CHEN X L, et al. Self-assemble strategy to fabricate high polyaniline loading nanocarbon hydrogels for flexible all-solid-state supercapacitors[J]. ACS Applied Energy Materials, 2021, 4(4): 3766-3776.

[38]TAI Q D, CHEN B L, GUO F, et al. In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells[J]. ACS Nano, 2011, 5(5): 3795-3799.

[39]KUMAR S, MAURYA I C, PRAKASH O, et al. Functionalized thermoplastic polyurethane as hole conductor for quantum dot-sensitized solar cell[J]. ACS Applied Energy Materials, 2018, 1(9): 4641-4650.

[40]ALDAINY G A, WATANABE F, KANNARPADY G K, et al. Optimizing lignosulfonic acid-grafted polyaniline as a hole-transport layer for inverted CH3NH3PbI3 perovskite solar cells[J]. ACS Omega, 2020, 5(4): 1887-1901.

[41]MABROUK S, GURUNG A, BAHRAMI B, et al. Electrochemically prepared polyaniline as an alternative to Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) for inverted perovskite solar cells[J]. ACS Appllied Energy Materials, 2022, 5(8): 9351-9360.

[42]SUN J, SHEN Y, HU X S. Polyaniline-flower-like CuS composites with improved electromagnetic interference shielding effectiveness[J]. Polymer Bulletin, 2017, 75(2): 653-667.

[43]HU X S, SHEN Y, LU L S, et al. Enhanced electromagnetic interference shielding effectiveness of ternary PANI-CuS-RGO composites[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(9): 6865-6872.

[44]ZHANG Y, QIU M N, YU Y, et al. A novel polyaniline-coated bagasse fiber composite with core-shell heterostructure provides effective electromagnetic shielding performance[J]. ACS Appllied Materials Interfaces, 2017, 9(1): 809-818.

[45]ZHANG Y, YANG Z J, WEN B Y. An ingenious strategy to construct helical structure with excellent electromagnetic shielding performance[J]. Advanced Materials Interfaces, 2019,6(11): 1900375.

[46]LI D Y, LIU L X, WANG Q W, et al. Functional polyaniline-mxene-cotton fabrics with acid-alkali-responsive and tunable electromagnetic interference shielding performances[J]. ACS Appllied Materials Interfaces, 2022, 14(10): 12703-12712.

[47]LANGER J J, RATAJCZAK K, FRACKOWIAK E, et al. Water-induced tuning of the emission of polyaniline LEDs within the NIR to vis range[J]. ACS Omega, 2021, 6(50): 34650-34660.

[48]WANG C C, LIU L, WANG J Y, et al. Electrochemically switchable circularly polarized photoluminescence within self-assembled conducting polymer helical microfibers[J]. Journal of American Chemical Society, 2022, 144(43): 19714-19718.

[49]席燕燕, 周剑章, 张彦, 等. 聚苯胺对纳米CdS的光致发光增强效应[J]. 高等学校化学学报, 2004, 12: 2322-2326.

XI Y Y, ZHOU J Z, ZHANG Y, et al. Enhanced photo-luminescence effect of nano-CdS in the nano-CdS/PANI composite films by PANI[J]. Chemical Journal of Chinese Universities, 2004, 12: 2322-2326.