沈士凯1,2, 李向征2, 赵安涛2, 赵旺亮2, 高 阳2, 王高琦1, 马君蓓1, 刘延圣1
(1.济南大学机械工程学院, 山东济南250022; 2. 山东海力同创散热制冷技术开发有限公司, 山东泰安271000)
引用格式:沈士凯, 李向征, 赵安涛, 等. 矿山粉碎机械散热装置自激振动强化传热[J]. 中国粉体技术, 2023, 29(5): 61-69.
SHEN S K, LI X Z, ZHAO A T, et al. Self-excited vibration heat transfer enhancement of heat dissipation device of mine crushing machinery[J]. China Powder Science and Technology, 2023, 29(5): 61-69.
DOI:10.13732/j.issn.1008-5548.2023.05.008
收稿日期:2023-06-17,修回日期:2023-06-28,在线出版时间:2023-07-27 10:59。
基金项目:国家自然科学基金项目,编号:52105258。
第一作者简介:沈士凯(1971—),男,工程师,研究方向为粉碎机械传热技术。E-mail: 251854856@qq.com。
通信作者简介:王高琦(1988—),男,副教授,硕士生导师,研究方向为植入性医疗器械结构设计及增材制造、 机械构件表面功能涂层、摩擦主动控制、 智能减振系统等。E-mail: wgq2087@vip.163.com。
摘要:粉碎机械冷却系统中管带式散热器是不可缺少的零部件之一,通过对粉碎机散热器进行改进,合理匹配散热器的散热量与功率,能够保证粉碎机稳定安全运转,提高工作可靠性,延长粉碎机使用寿命。建立流体动力学数学模型、几何模型,根据数学模型进行网格划分和边界条件设置,利用Fluent软件对散热器进行温度场仿真分析。结果表明:对于管带式散热器的翅片,增大振动速度能够显著提高传热效果;在风速大于5 m/s的条件下会起到削弱传热的作用;利用振动作用可以增强管带式散热器的传热效果,提升散热性能。
关键词:管带式散热器; 振动; 仿真分析; 强化传热
Abstract:Tube-belt radiator is one of the indispensable parts in the cooling system of crushing machinery. By improving the radiator of the crusher, the reasonable matching of the heat dissipation and power of the radiator can ensure the stable and safe operation of the crusher, improve the reliability of the work, and prolong the service life of the crusher. The mathematical model and geometric model of fluid dynamics were established. According to the mathematical model, the mesh division and boundary condition setting were carried out. The temperature field simulation analysis of the radiator was carried out by Fluent software. The results show that for the fins of the tube-band radiator, increasing the vibration speed can significantly improve the heat transfer effect, and it will weaken the heat transfer when the wind speed is greater than 5 m/s. Using the oscillation effect can enhance the heat transfer effect of the tube-band radiator and improve the performance of the radiator.
Keywords:tube-belt radiator; vibration; simulation analysis; enhanced heat transfer
参考文献(References):
[1]蔡改贫, 郝书灏, 黄金若, 等. 振动慢剪破碎机内锥动力学分析[J]. 中国粉体技术, 2022, 28(3): 9-15.
CAI G P, HAO S H, HUANG J R, et al. Dynamic analysis of inner cone of vibration slow shear crusher[J]. China Powder Science and Technology, 2022, 28(3): 9-15.
[2]韩跃新, 朱一民, 印万忠, 等. 低品位铝土矿在振动磨机中的选择性磨矿研究[J]. 中国粉体技术, 2009, 15(5): 16-20.
HAN Y X, ZHU Y M, YIN W Z, et al. Research on selective grinding of lowgrade bauxite in vibration mill[J]. China Powder Science and Technology, 2009, 15(5): 16-20.
[3]袁凤宇, 崔啸宇, 迟源. “立式磨+互联网”在非金属矿行业中的应用[J]. 中国粉体技术, 2016, 22(2): 108-111.
YUAN F Y, CHI Y, CUl X Y. Application of “vertical roller mill+Internet” in non-metallic minerals industry[J]. China Powder Science and Technology, 2016, 22(2): 108-111.
[4]METCALFE G, LESTER D. Mixing and heat transfer of highly viscous food products with a continuous chaotic duct flow[J]. Journal of Food Engineering, 2009, 95(1): 21-29.
[5]UDA N, YAMAOKA N, HORIIKE H, et al. Heat transfer enhancement in lithium annular flow under transverse magnetic field[J]. Energy Conversion and Management, 2002, 43(3): 441-447.
[6]YANG L J, REN J X, SONG Y Z. Convection heat transfer enhancement of air in a rectangular duct by application of a magnetic quadrupole field[J]. International Journal of Engineering Science, 2004, 42(5/6): 491-507.
[7]HABIB M A, ATTYA A M, SAID S A M, et al. Heat transfer characteristics and Nusselt number correlation of turbulent pulsating pipe air flows[J]. Heat and Mass Transfer, 2004, 40(4): 307-318.
[8]ROY S, SAIKRISHNAN P, RAVINDRAN R. Role of non-uniform slot injection (suction) model on the separation of a laminar boundary layer flow[J]. Mathematical and Computer Modelling, 2009, 50(1/2): 45-52.
[9]ARIK M, COHEN A B, YOU S M. Enhancement of pool boiling critical heat flux in dielectric liquids by microporous coatings[J]. International Journal of Heat and Mass Transfer, 2007, 50(5/6): 997-1009.
[10]TURNER A B, HUBBE-WALKER S E, BAYLEY F J. Fluid flow and heat transfer over straight and curved rough surfaces[J]. International Journal of Heat and Mass Transfer, 2000, 43(2): 251-262.
[11]POSEW K, LAOHALERTDECHA S, WONGWISES S. Evaporation heat transfer enhancement of R-134a flowing inside smooth and micro-fin tubes using the electrohydrodynamic technique[J]. Energy Conversion and Management, 2009, 50(7): 1851-1861.
[12]JOARDAR A, JACOBI A M. Heat transfer enhancement by winglet-type vortex generator arrays in compact plain-fin-and-tube heat exchangers[J]. International Journal of Refrigeration, 2008, 31(1): 87-97.
[13]VAJJHA R S, DAS D K, NAMBURU P K. Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator[J]. International Journal of Heat and Fluid Flow, 2010, 31(4): 613-621.
[14]KATTI V, PRABHU S V. Heat transfer enhancement on a flat surface with axisymmetric detached ribs by normal impingement of circular air jet[J]. International Journal of Heat and Fluid Flow, 2008, 29(5): 1279-1294.
[15]ZHOU J W, WANG Y G. Unsteady jet impingement: heat transfer on smooth and non-smooth surfaces[J]. International Communications in Heat and Mass Transfer, 2009, 36(2): 103-110.
[16]BHARADWAJ P, KHONDGE A D, DATE A W. Heat transfer and pressure drop in a spirally grooved tube with twisted tape insert[J]. International Journal of Heat and Mass Transfer, 2009, 52(7/8): 938-1944.
[17]COWELL T A, HEIKAL M R, ACHAICHIA A. Flow and heat transfer in compact louvered fin surfaces[J]. Experimental Thermal and Fluid Science, 1995, 10(2) :192-199.
[18]CHANG Y J, WANG C C. A generalized heat transfer correlation for louver fin geometry[J]. International Journal of Heat and Mass Transfer, 1997, 40(3): 533-544.
[19]CHANG Y J, HSU K C, LIN Y T, et al. Generalized friction correlation for louver fin geometry[J]. International Journal of Heat and Mass Transfer, 2000, 43(12): 2237-2243.
[20]CHANG Y J, CHANG W J, LI M C, et al. An amendment of the generalized friction correlation for louver fin geometry[J]. International Journal of Heat and Mass Transfer, 2006, 49(21/22): 4250-4253.