李岚晟1, 李 然1, 杨 晖1,2
(1. 上海理工大学光电信息与计算机工程学院, 上海200093; 2. 上海健康医学院 医疗器械学院, 上海201318)
引用格式:李岚晟, 李然, 杨晖. 旋转滚筒离散崩塌中被动层颗粒重排机制[J].中国粉体技术, 2023, 29(5): 49-60.
LI L S, LI R, YANG H. Passive layer particle rearrangement mechanism in discrete avalanche of rotating drum[J]. China Powder Science and Technology, 2023, 29(5): 49-60.
DOI:10.13732/j.issn.1008-5548.2023.05.007
收稿日期:2023-03-21,修回日期:2023-05-31,在线出版时间:2023-08-10 13:59。
基金项目:国家自然科学基金项目,编号:12072200、 12002213。
第一作者简介:李岚晟(1998—),男,硕士研究生,研究方向为颗粒技术。E-mail: 202330361@st.usst.edu.cn。
通信作者简介:杨晖(1981—),男,教授,博士,博士生导师,研究方向为颗粒技术。E-mail: yangh_23@sumhs.edu.cn。
摘要:旋转滚筒中颗粒物质离散崩塌的触发与传播机制是十分复杂的问题,被动层颗粒在其中起到非常重要的作用。为进一步研究被动层颗粒局部重排触发与传播机制,对旋转滚筒中颗粒的离散崩塌进行离散元模拟,运用改进的颗粒温度计算方法获得更详细的被动层颗粒运动信息。通过被动层颗粒温度空间分布识别出颗粒重排,得到颗粒重排点在崩塌周期中的时间与空间分布,针对具体颗粒重排区域考察颗粒重排的传播速度、颗粒堆积结构以及力学特性。结果表明:颗粒重排广泛存在于整个崩塌周期的被动层中,且在被动层靠上位置发生最为频繁;颗粒重排以弹性波的形式由触发点向四周传播,并且在主力链方向上具有更快的传播速度;颗粒重排的区域在重排后距离库伦失效准则更远,整个区域发生细微的压实。
关键词:旋转滚筒; 离散元; 颗粒温度; 颗粒重排
Abstract:The triggering and propagation mechanisms of discrete avalanche of granular matter in a rotating drum are complex, with the passive layer of particles playing a crucial role. In order to further investigate the triggering and propagation mechanisms of localized rearrangements of passive layer particles, discrete element simulations were conducted to study the discrete avalanche of particles in a rotating drum, and an improved granular temperature calculation method was used to obtain more detailed information about the motion of passive layer particles. First, the particle rearrangement was identified by the spatial distribution of the passive layer granular temperature, and the time and spatial distribution of the particle rearrangement region in the avalanche period were obtained. Then, the propagation speed of particle rearrangement, particle stacking structure, and mechanical properties were investigated in specific particle rearrangement regions. The results show that particle rearrangement is widespread in the entire passive layer during the avalanche period and occurred most frequently in the upper part of the passive layer. Particle rearrangement propagates in the form of elastic waves from the triggering point to the surroundings, with a faster propagation speed in the direction of the main force chain. The particle rearrangement area is further away from the Coulomb failure criterion after rearrangement, and the entire area experiences slight compaction.
Keywords:rotating drum; discrete element method; granular temperature; rearrangement
参考文献(References):
[1]孙其诚, 金峰, 王光谦. 颗粒物质中的多尺度问题[J]. 力学与实践, 2010, 32(1): 10-15.
SUN Q C, JIN F, WANG G Q. The multiscale structure of dense granular matter[J]. Mechanics in Engineering, 2010, 32(1): 10-15
[2]杨猛,胡志超, 张延化, 等. 农业颗粒物料气力清选装置研究现状与展望[J]. 中国农机化学报, 2020, 41(3): 121-127.
YANG M, HU Z C, ZHANG Y H, et al. Research status and prospect of pneumatic cleaning device for agricultural granular materials[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(3): 121-127.
[3]侯英伟, 曹东. 基于EDEM的混凝土板桩静压贯入过程三维颗粒流数值模拟[J]. 水利水电技术, 2020, 51(4): 123-131.
HOU Y W, CAO D. EDEM-based 3-D numerical simulation of particle flow during static-pressure penetration of concrete sheet pile[J]. Water Resources and Hydropower Engineering, 2020, 51(4): 123-131.
[4]周益娴. 基于连续数值模拟的筒仓卸载过程中颗粒物压强及其速度场分析[J]. 物理学报, 2019, 68(13): 230-238.
ZHOU Y X. Pressure and velocity field analysis of particulate matter in silo unloading process based on continuous numerical simulation[J]. Acta Physica Sinica, 2019, 68(13): 230-238.
[5]王昆, 凡凤仙. 滚筒装备内颗粒混合与粉磨研究进展[J]. 中国粉体技术, 2020, 26(4):38-45.
WANG K, FAN F X. Research progress on granular mixing and grinding in rotating equipments[J]. China Powder Science and Technology, 2020, 26(4):38-45.
[6]杨晖, 张国华, 王宇杰, 等. 密集颗粒体系的颗粒运动及结构测量技术[J]. 力学进展, 2018, 48(1): 541-590.
YANG H, ZHANG G H, WANG Y J, et al. Measurement techniques of grain motion and inter-grain structures in dense granular materials[J]. Advances in Mechanics, 2018, 48(1): 541-590.
[7]LÜKEN A, STÜWE L, LOHAUS J, et al. Particle movements provoke avalanche-like compaction in soft colloid filter cakes[J]. Scientific Reports, 2021, 11(1): 12836.
[8]ZHANG G, RIDOUT S A, LIU A J. Interplay of rearrangements, strain, and local structure during avalanche propagation[J]. Physical Review X, 2021, 11(4): 041019.
[9]MEI J, MA G, TANG L, et al. Spatial clustering of microscopic dynamics governs the slip avalanche of sheared granular materials[J]. International Journal of Plasticity, 2023, 163: 103570.
[10]GRAY J M N T. Granular flow in partially filled slowly rotating drums[J]. Journal of Fluid Mechanics, 2001, 441: 1-29.
[11]AMON D L, NICULESCU T, UTTER B C. Granular avalanches in a two-dimensional rotating drum with imposed vertical vibration[J]. Physical Review E, 2013, 88(1): 012203.
[12]DUBÉ O, ALIZADEH E, CHAOUKI J, et al. Dynamics of non-spherical particles in a rotating drum[J]. Chemical Engineering Science, 2013, 101: 486-502.
[13]SALINAS V, QUININAO C, GONZALEZ S, et al. Triggering avalanches by transverse perturbations in a rotating drum[J]. Scientific Reports, 2021, 11(1): 1-7.
[14]DE RICHTER S K, LE CAЁR G, DELANNAY R. Dynamics of rearrangements during inclination of granular packings: the avalanche precursor regime[J]. Journal of Statistical Mechanics: Theory and Experiment, 2012, 2012(4): P04013.
[15]WANG Z, ZHANG J. Fluctuations of particle motion in granular avalanches-from the microscopic to the macroscopic scales[J]. Soft Matter, 2015, 11(27): 5408-5416.
[16]LI R, YANG H, ZHENG G, et al. Double speckle-visibility spectroscopy for the dynamics of a passive layer in a rotating drum[J]. Powder Technology, 2016, 295: 167-174.
[17]LI R, ZHENG G, CHEN Q, et al. Two types of particle dynamics in the passive layer of a granular bed composed of irregular particles[J]. Powder Technology, 2020, 362: 231-237.
[18]周池楼, 赵永志. 离散单元法及其在流态化领域的应用[J]. 化工学报, 2014, 65(7): 2520-2534.
ZHOU C L,ZHAO Y Z. Discrete element method and its applications in fluidization[J]. CIESC Journal, 2014, 65(7): 2520-2534.
[19]STANIFER E, MANNING M L. Avalanche dynamics in sheared athermal particle packings occurs via localized bursts predicted by unstable linear response[J]. Soft Matter, 2022, 18(12): 2394-2406.
[20]SANZ E, VALERIANI C, ZACCARELLI E, et al. Avalanches mediate crystallization in a hard-sphere glass[J]. Proceedings of the National Academy of Sciences, 2014, 111(1): 75-80.
[21]冯靖禹, 韩韧, 张宇峰, 等. 基于离散元法的雪崩效应的仿真研究[J]. 软件, 2020, 41(7): 264-268.
FENG J Y, HAN R, ZHANG Y F,et al. Simulation of avalanche effect based on discrete element method[J]. Computer Engineering &Software, 2020, 41(7): 264-268.
[22]XIA Y, STICKEL J J, JIN W, et al. A review of computational models for the flow of milled biomass part I: discrete-particle models[J]. ACS Sustainable Chemistry &Engineering, 2020, 8(16): 6142-6156.
[23]YANG H, ZHU Y, LI R, et al. Kinetic granular temperature and its measurement using speckle visibility spectroscopy[J]. Particuology, 2020, 48: 160-169.
[24]JUNG J, GIDASPOW D, GAMWO I K. Measurement of two kinds of granular temperatures, stresses, and dispersion in bubbling beds[J]. Industrial &Engineering Chemistry Research, 2005, 44(5): 1329-1341.
[25]孙其诚,刘晓星,张国华,等.密集颗粒物质的介观结构[J].力学进展.2017,47(1): 263-308.
SUN Q C, LIU X X, ZHANG G H, et al. The mesoscopic structures of dense granular materials[J]. Advances in Mechanics, 2017, 47(1): 263-308.
[26]MOU S, YANG H, LI R, et al. An improved wavelet analytical method for studying particle dynamics of the passive layer within a granular drum[C]//Journal of Physics: Conference Series. IOP Publishing, 2019, 1237(4): 042071.
[27]LEMRICH L. Discrete element modeling of acoustic wave propagation in granular media: nonlinearity and material softening[D]. Zurich:ETH Zurich, 2019.
[28]ASTE T, DI MATTEO T. Emergence of gamma distributions in granular materials and packing models[J]. Physical Review E, 2008, 77(2): 021309.
[29]MAJMUDAR T S, BEHRINGER R P. Contact force measurements and stress-induced anisotropy in granular materials[J]. Nature, 2005, 435(7045): 1079-1082.