ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第5期
<返回第5期

微米级锌粉的爆炸危险性

Explosion hazard of micron zinc powders

刘晓妍a, 杨瑞霞a,b,c, 李晓泉a,b,c, 杨智雯a, 刘 浩a

(广西大学a. 资源环境与材料学院, b. 省部共建特色金属材料与组合结构全寿命安全国家重点实验室,c. 广西高校矿物工程重点实验室, 广西南宁530004)


引用格式:刘晓妍, 杨瑞霞, 李晓泉, 等. 微米级锌粉的爆炸危险性[J]. 中国粉体技术, 2023, 29(5): 33-39.

LIU X Y, YANG R X, LI X Q, et al. Explosion hazard of micron zinc powders[J]. China Powder Science and Technology, 2023, 29(5): 33-39.

DOI:10.13732/j.issn.1008-5548.2023.05.005

收稿日期:2023-02-15,修回日期:2023-05-27,在线出版时间:2023-07-27 13:32

基金项目:国家自然科学基金,编号:52264014;广西壮族自治区自然科学基金,编号:2020GXNSFAA297037。

第一作者简介:刘晓妍(1998—),女(壮族),硕士研究生,研究方向为粉尘爆炸。E-mail: 2115392050@st.gxu.edu.cn。

通信作者简介:杨瑞霞(1981—),女,讲师,博士,硕士生导师,研究方向为粉尘爆炸、 应急管理、 材料表面工程。E-mail: rx-Yang@hotmail.com。


摘要:微米级锌粉易悬浮于空中, 形成具有爆炸危险性的粉尘云, 粉尘质量浓度一旦达到爆炸下限易发生爆炸事故。 爆炸下限随粉尘粒径减小而降低, 爆炸可能性增强。 为研究微米级锌粉爆炸危险性, 选择粒径1 μm的锌粉为研究对象, 使用20 L爆炸试验装置进行试验, 利用扫描电子显微镜观察锌粉及其爆炸产物形貌特征, 研究锌粉爆炸机制, 点火延迟时间和粉尘质量浓度对锌粉爆炸性参数的影响,确定粒径1 μm锌粉爆炸下限、 最大爆炸压力和最大爆炸压力上升速率。 结果表明: 锌粉爆炸为气相燃烧过程; 1 μm锌粉爆炸的最佳点火延迟时间为180 ms, 爆炸下限为1 500~2 000 g/m3, 锌粉质量浓度为5 000 g/m3时达到最大爆炸压力、 最大爆炸压力上升速率和最大爆炸指数, 分别为0.481 MPa、 46.67 MPa/s、 12.67 MPa·m/s; 微米级锌粉爆炸危险等级属于St1, 爆炸危险性较弱。

关键词:粉尘爆炸; 微米级锌粉; 爆炸下限; 最大爆炸压力; 最大爆炸指数

Abstract:The micron zinc powders are easily suspended in the air, forming a dust cloud with explosive risk. An explosion accident will likely occur if the dust mass concentration reaches the lower explosion limit. Also, the lower explosion limit decreases with the decreasing in dust particle size, and the possibility of explosion increases. In order to study the explosion risk of micron zinc powders, size 1 μm zinc powders were taken as the research object, the explosion mechanism was studied by observing zinc powders and explosion products while using scanning electron microscope, the influences of ignition delay time and mass concentration on the explosion parameters, and the determinations of the lowest explosion limit, maximum explosion pressure, and maximum rate of pressure rise were done by using 20 L spherical explosion test device. The results show that zinc powders explosion is gas phase combustion process and the optimal ignition delay time is 180 ms. On the condition, the lowest explosion limit is between 1 500 g/m3 and 2 000 g/m3. The maximum explosion pressure, the maximum rate of pressure rise, and the maximum explosion index are 0.481 MPa, 46.67 MPa/s, and 12.67 MPa·m/s successively when mass concentration is 5 000 g/m3. The hazard class of micron zinc powders is St1 and the explosive hazard is weak.

Keywords:dust explosion; micron zinc powder; lowest explosion limit; maximum explosion pressure; maximum explosion index


参考文献(References):

[1]陈刚, 张晓蕾, 徐帅, 等. 我国2005—2020年粉尘爆炸事故统计分析[J]. 中国安全科学学报, 2022, 32(8): 76-83.

CHEN G, ZHANG X L, XU S, et al. Statistical analysis on dust explosion accidents in China from 2005 to 2020[J]. China Safety Science Journal, 2022, 32(8): 76-83.

[2]WANG X W, WANG Z R, NI L, et al. Explosion characteristics of aluminum powder in different mixed gas environments[J]. Powder Technology, 2020, 369: 53-71.

[3]SERRANO J, RATKOVICH N, MUNOZ F. Explosion severity behavior of micro/nano-sized aluminum dust in the 20 L sphere: influence of the particle size distribution (PSD) and nozzle geometry[J]. Process Safety and Environmental Protection, 2021, 152: 1-13.

[4]REDING N S, FARRELL T M, VERMA A, et al. Effect of particle morphology on metal dust deflagration sensitivity and severity[J]. Journal of Loss Prevention in the Process Industries, 2021, 70(1): 104396.

[5]MILLOGO M, BERNARD S, GILLARD P. Combustion characteristics of pure aluminum and aluminum alloys powders[J]. Journal of Loss Prevention in the Process Industries, 2020, 68(1): 104270.

[6]LUO J W, WANG Q H, CHUNG Y H, et al. Hazard evaluation, explosion risk, and thermal behaviour of magnesium-aluminium alloys during the polishing process by using a 20 L apparatus, MIEA, and TGA[J]. Process Safety and Environmental Protection, 2021, 153: 268-277.

[7]ECKHOFF R K, 李刚. 可燃粉尘爆炸基础研究综述[J]. 安全与环境学报, 2021, 21(3): 1068-1075.

ECKHOFF R K, LI G. Review of the basic researches on combustible dust explosions[J]. Journal of Safety and Environment, 2021, 21(3): 1068-1075.

[8]GUAN W L, JIN M H, DONG C J, et al. Analysis on research trends with dust explosions by bibliometric approach[J]. Journal of Loss Prevention in the Process Industries, 2023, 81: 104958.

[9]WANG Z, MENG X B, LIU J Q, et al. Flame propagation behaviours and explosion characteristics of Al-Mg alloy dust based on thermodynamic analysis[J]. Powder Technology, 2022, 406: 117559.

[10]中国煤炭工业协会. 粉尘云最大爆炸压力和最大压力上升速率测定方法: GB/T 16426—1996[S]. 北京: 中国标准出版社, 1996.

China National Coal Association. Determination for maximum explosion pressure and maximum rate of pressure rise of dust cloud: GB/T 16426—1996[S]. Beijing: China Standards Press, 1996.

[11]全国安全生产标准化技术委员会. 粉尘云爆炸下限浓度测定方法: GB/T 16425—2018[S]. 北京: 中国标准出版社, 2018.

National Safety Production Standardization Technical Committee. Determination for minimum explosive concentration of dust clouds: GB/T 16425—2018[S]. Beijing: China Standards Press, 2018.

[12]XIONG X Y, GAO K, MU J, et al. Study on explosion characteristic parameters and induction mechanism of magnesium powder/hydrogen hybrids[J]. Fuel, 2022, 326: 125077.

[13]JING Q, WANG D, LIU Q M, et al. Ignition sensitivity and explosion behaviors of micron-sized aluminum powder: comparison between flake aluminum powder and spherical aluminum powder[J]. Chemical Engineering Science, 2022, 252: 117502.

[14]CASTELLANOS D, CARRETO V, SKJOLD T, et al. Construction of a 36 L dust explosion apparatus and turbulence flow field comparison with a standard 20 L dust explosion vessel[J]. Journal of Loss Prevention in the Process Industries, 2018, 55: 113-123.

[15]赵一姝, 范健强, 白建平, 等. 粉尘浓度对20 L球罐内硫磺粉尘分散过程流场特性的影响[J]. 中国安全生产科学技术, 2018, 14(7): 48-53.

ZHAO Y S, FAN J Q, BAI J P, et al. Influence of dust concentration on flow field characteristics of sulfur dust during dispersion process in 20 L spherical tank[J]. Journal of Safety Science and Technology, 2018, 14(7): 48-53.

[16]林柏泉, 梅晓凝, 王可, 等. 基于20 L球形爆炸装置的微米级铝粉爆炸特性试验[J]. 北京理工大学学报, 2016, 36(7): 661-667.

LIN B Q, MEI X N, WNAG K, et al. Explosion characteristics of micro-aluminum powders in 20 L spherical vessels[J]. Transactions of Beijing Institute of Technology, 2016, 36(7): 661-667.

[17]Explosion protection systems-Part 1: Determination of explotiion indices of combustible dusts in air: ISO 6184—1:1985[S/OL]. [2023-02-16]. https://www.iso.org/obp/ui/#iso:std:iso:6184:-1:ed-1:v1:en.

[18]乐有邦, 吴晓煜, 张倩倩, 等. 粉尘爆炸危险性分级研究及金属粉尘试分级[C]//中国金属学会冶金安全与健康分会. 中国金属学会冶金安全与健康分会学术年会论文集: 2016年卷. [S.L.):(s.n.], 2016: 85-92.

LE Y B, WU X Y, ZHANG Q Q, et al. Dust explosion risk classification research and metal dust trial classification[C]//Metallurgical Safety and Health Branch of Chinese Society for Metals. Proceedings of the Annual Conference of Metallurgical Safety and Health Branch of The Chinese Society for Metals: 2011. [S.L.):(s.n.], 2016: 85-92.