ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第5期
<返回第5期

水泥-镁渣固化盐渍土力学性能实验

Mechanical properties test of solidified saline soil with cement-magnesium slag

单 龙1, 李宏波1, 2, 3, 程银银1, 康鑫睿1, 朱一丁1

(1. 宁夏大学土木与水利工程学院, 宁夏银川750021; 2. 宁夏节水灌溉与水资源调控工程技术研究中心, 宁夏银川750021;3. 旱区现代农业水资源高效利用教育部工程研究中心, 宁夏银川750021)


引用格式:单龙, 李宏波, 程银银, 等. 水泥-镁渣固化盐渍土力学性能试验[J]. 中国粉体技术, 2023, 29(5): 8-16.

SHAN L, LI H B, CHENG Y Y, et al. Mechanical properties test of solidified saline soil with cement-magnesium slag[J]. China Powder Science and Technology, 2023, 29(5): 8-16.

DOI:10.13732/j.issn.1008-5548.2023.05.002

收稿日期:2023-03-30,修回日期:2023-05-28,在线出版时间:2023-08-04 12:52。

基金项目:国家自然科学基金项目,编号: 52069025; 宁夏回族自治区自然科学基金项目,编号: 2021AAC03080;宁夏高等学校一流学科(水利工程学科)资助项目,编号:NXYLXK2021A03。

第一作者简介:单龙(2000—),男,硕士研究生,研究方向为道路材料。E-mail: 12022131152@stu.nxu.edu.cn。

通信作者简介:朱一丁(1967—),教授,博士,研究方向为土木工程新材料。E-mail: zyd-1011@163.com。


摘要:为改善宁夏盐渍土地基混凝土渠道衬砌易冻胀、易腐蚀等缺陷,提高当地镁渣利用率,采用水泥-镁渣对盐渍土进行固化研究,设计13种不同配比的水泥-镁渣固化盐渍土试样,通过三轴试验、 XRD和SEM表征手段分析试样的抗剪强度指标及水化机理。结果表明:对7、 28 d龄期试样,水泥-镁渣固化盐渍土的黏聚力、内摩擦角均随压实系数的增大而增大;单掺水泥时,固化盐渍土的黏聚力和内摩擦角随水泥含量的增加而变大;镁渣的加入对试样的黏聚力影响较大,对摩擦角影响较小;建立水泥及镁渣掺量与固化盐渍土抗剪强度指标的关系模型;固化盐渍土的水化产物及抗剪强度增强来源均以水化硅酸钙为主;28 d龄期试样的固化盐渍土颗粒能更好地填充孔隙,微观结构更致密,从而强度更高;水泥-镁渣固化盐渍土的抗剪强度显著提高,其中水泥质量分数为3%、 镁渣质量分数为10%的固化盐渍土力学效果较佳。

关键词:水泥-镁渣固化盐渍土; 抗剪强度; 水化机理; 微观结构

Abstract:In order to improve the lining defects of concrete channel in saline soil foundation in Ningxia, such as frost heave and corrosion, and to improve the utilization rate of local magnesium slag, the study on solidification of saline soil was carried out with cement-magnesium slag. Thirteen kinds of cement-magnesium slag with different mass fractions were designed to cure saline soil samples, and the shear strength and hydration mechanism of the samples were analyzed by XRD and SEM characterization methods. The results show that the cohesion and internal friction angle of cement-magnesium slag solidify saline soil increase with the increasing of compacting coefficient for samples at 7 and 28 d of age. The cohesion and internal friction angle of solidified saline soil increase with the increasing of cement content. The addition of magnesium slag has a great effect on the cohesion of the sample, but a small effect on the friction angle. The relationship model between cement and magnesium slag content and shear strength index of cured saline soil is established. Hydrated calcium silicate is the main source of hydration products and shear strength enhancement of cured saline soil. The solidified saline soil particles at the age of 28 d can fill the pores and the microstructure is more dense, thus the strength is higher. The shear strength of cement and magnesium slag solidified saline soil is improved significantly, and the mechanical effect of cement and magnesium slag solidified soil is better when the cement fraction is 3% and the magnesium slag fraction is 10%.

Keywords:cement-magnesium slag solidified saline soil; shear strength; hydration mechanism; microstructure


参考文献(References):

[1]陈艳萍, 张通和, 刘畅. 中国水资源利用效率及其影响因素研究:基于Shephard水资源距离函数[J]. 世界地理研究, 2022, 31(3): 591-601.

CHEN Y P, ZHANG T Z, LIU C. Study on water resources utilization efficiency and its influencing factors in China: based on Shephard water resources distance function[J]. World Geographical Research, 2022, 31(3): 591-601.

[2]刘子西, 席睿, 黑正军, 等. 宁夏沿黄城市带碳水足迹及其关联关系研究[J]. 水资源与水工程学报, 2023, 34(2): 1-8.

LIU Z X, XI R, HEI Z J, et al. Study on carbon and water footprint and its correlation along Huangcheng City Belt in Ningxia[J]. Journal of Water Resources and Water Engineering, 2023, 34(2): 1-8.

[3]陆立国. 宁夏灌区末级渠系衬砌现状与破坏原因分析研究[J]. 水利水电技术, 2011, 42(10): 106-109.

LU L G. Analysis on the lining status and failure causes of the last canal system in Ningxia Irrigation Area[J]. Water Resources and Hydropower Technology, 2011, 42(10): 106-109.

[4]BAVE O A, KOSICHENKO Y M, GARBUZ A Y. Composite polymer coatings for repair of concrete linings of channels[J]. Defect and Diffusion Forum, 2021, 410: 799-805.

[5]李宏波. 盐渍土地基整体式渠道衬砌冻融响应机理及模型研究[D]. 银川: 宁夏大学, 2022.

LI H B. Study on freeze-thaw response mechanism and model of integrated channel lining of saline soil foundation[D]. Yinchuan: Ningxia University, 2022.

[6]徐永丽, 董子建, 周吉森, 等.冻融及不同温度下石灰改良盐渍土动力参数研究[J]. 岩土工程学报, 2022, 44(1): 90-97.

XU Y I, DONG Z J, ZHOU J S, et al. Study on dynamic parameters of saline soil improved by lime under freeze-thaw conditions and different temperatures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 90-97.

[7]周坤渊, 刘仕翔, 罗泽娇. 常见碱性工业废渣稳定化修复重金属污染土壤的研究进展[J]. 安全与环境工程, 2021, 28(6): 174-181.

ZHOU K Y, LIU S X, LUO Z J. Research progress in stabilization of heavy metal contaminated soils by common alkaline industrial wastes[J]. Safety and Environmental Engineering, 2021, 28(6): 174-181.

[8]刘浪, 阮仕山, 方治余, 等. 镁渣的改性及其在矿山充填领域的应用探索[J]. 煤炭学报, 2021, 46(12): 3833-3845.

LIU L, RUAN S S, FANG Z Y, et al. Modification of magnesium slag and its application in mine filling field[J]. Journal of China Coal Society, 2021, 46(12): 3833-3845.

[9]李舒洁, 常立君. 再生微粉固化黄土状盐渍土的力学特性和微观机理[J]. 中国粉体技术, 2022, 28(5): 30-39.

LI S J, CHANG L J. Mechanical properties and microscopic mechanism of regenerated micro-powder solidified loessial saline soil[J]. China Powder Science and Technology, 2022, 28(5): 30-39.

[10]张杨. 土凝岩改良盐渍细砂土直剪试验及边坡稳定性研究[D]. 兰州: 兰州交通大学, 2021.

ZHANG Y. Study on direct shear test and slope stability of modified saline fine sand by soil set rock[D]. Lanzhou: Lanzhou Jiaotong University, 2021.

[11]朱燕, 余湘娟, 陈佳佳. 丙烯酸酯共聚乳液固化盐渍土的耐久性试验[J]. 扬州大学学报(自然科学版), 2022, 25(4): 59-65.

ZHU Y, YU X J, CHEN J J. Durability test of acrylate copolymerization emulsion curing saline soil[J]. Journal of Yangzhou University (Natural Science Edition), 2022, 25(4): 59-65.

[12]杨家顺, 柴志军. 工业废渣改良盐渍土性能试验研究[J]. 山东交通学院学报, 2012, 20(2): 67-70, 74.

YANG J S, CHAI Z J. Experimental study on improvement of saline soil by industrial waste slag[J]. Journal of Shandong Jiaotong University, 2012, 20(2): 67-70, 74.

[13]杜玉凤, 何振全, 张仙梅, 等. 活化矿物对盐渍土改良及玉米生长的影响[J]. 山东农业科学, 2021, 53(4): 494-497.

DU Y F, HE Z Q, ZHANG X M, et al. Effects of activated minerals on improvement of saline soil and growth of maize[J]. Shandong Agricultural Sciences, 2021,53(4): 494-497.

[14]张旭. 金属镁渣在水泥生产中的应用实践[J]. 水泥技术, 2023(1): 62-67, 73.

ZHANG X. Application practice of metal magnesium slag in cement production[J]. Cement Technology, 2023(1): 62-67, 73.

[15]孙伟吉, 刘浪, 徐龙华, 等. 改性镁渣基矿用复合胶凝材料的水化性能[J]. 中南大学学报(自然科学版), 2022, 53(10): 4057-4070.

SUN W J, LIU L, XU L H, et al. Hydration properties of modified magnesium slag based composite cementifier for mine[J]. Journal of Central South University (Science and Technology), 2022, 53(10): 4057-4070.

[16]王正龙, 邓杰, 梅岭, 等. 聚乙烯醇纤维加筋水泥固化疏浚土静力特性试验研究[J]. 江苏科技大学学报(自然科学版), 2021, 35(4): 104-108.

WANG Z L, DENG J, MEI L, et al. Experimental study on static properties of dredged soil solidified with polyvinyl alcohol fiber reinforced cement[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2021, 35(4): 104-108.

[17]丁永发, 李宏波, 张轩硕, 等. 工业废渣协同水泥固化渠道地基盐渍土强度及微观机理研究[J]. 灌溉排水学报, 2022, 41(6): 113-120.

DING Y F, LI H B, ZHANG X S, et al. Study on strength and microscopic mechanism of saline soil in channel foundation solidified with industrial waste slag[J]. Journal of Irrigation and Drainage, 2022, 41(6): 113-120.

[18]DIAZ-SECADES L A, GONZLEZ R, RIVERA N, et al. Waste heat recovery system for marine engines optimized through a preference learning rank function embedded into a Bayesian optimizer[J]. Ocean Engineering, 2023, 281: 114747.

[19]李宏波, 田军仓, 南红兵, 等. 几种固化剂对渠道盐渍土地基力学性能影响的试验研究[J]. 灌溉排水学报, 2018, 37(12): 94-99.

LI H B, TIAN J C, NAN H B, et al. Experimental study on effects of curing agents on mechanical properties of saline soil foundation in channels[J]. Journal of Irrigation and Drainage, 2018, 37(12): 94-99.

[20]孙睿, 邬兆杰, 王栋民, 等. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 98-108.

SUN R, WU ZHAO J, WANG D M, et al. Properties and hydration mechanism of superfine magnesium slag micro-powder cement composite cementitious materials[J]. Materials Review, 2023, 37(9): 98-108.

[21]卫煜, 陈平, 明阳, 等. 超细高活性矿物掺合料对UHPC水化和收缩性能的影响[J]. 硅酸盐通报, 2022, 41(2): 461-468.

WEI Y, CHEN P, MING Y, et al. Effect of ultra-fine and highly active mineral admixtures on hydration and shrinkage properties of UHPC[J]. Bulletin of the Chinese Ceramics, 2022, 41(2): 461-468.

[22]黄华, 郭梦雪, 张伟, 等. 粉煤灰-矿渣基地聚物混凝土力学性能与微观结构[J]. 哈尔滨工业大学学报, 2022, 54(3): 74-84.

HUANG H, GUO M X, ZHANG W, et al. Mechanical properties and microstructure of polymer concrete in flyash-slag base[J]. Journal of Harbin Institute of Technology, 2022, 54(3): 74-84.