ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第4期
<返回第4期


基于电迁移特性的呼吸性粉尘荷电分离方法

Charge separation method of respirable dust based on electromigration characteristics

赵政

(中煤科工集团重庆研究院有限公司, 重庆 400037)


引用格式:赵政. 基于电迁移特性的呼吸性粉尘荷电分离方法[J]. 中国粉体技术, 2023, 29(4): 150-158.

ZHAO Z. Charge separation method of respirable dust based on electromigration characteristics[J]. China Powder Science and Technology, 2023, 29(4): 150-158.

DOI:10.13732/j.issn.1008-5548.2023.04.015

收稿日期:2022-11-22,修回日期:2023-05-18,在线出版时间:2023-06-21 17:09。

基金项目:重庆市自然科学基金项目,编号:cstc2020jcyj-msxmX0512;中国煤炭科工集团重点项目,编号:2021-2-TD-ZD009。

第一作者简介:赵政(1983—),男,副研究员,博士,研究方向为粉尘安全仪表及尘肺预警。 E-mail:zhaozheng-724@163.com。


摘要:尘肺病是我国病例数量最多的职业病,且每年以1万例的速度继续新发增长,给社会造成巨大的经济损失和不良影响,其罪魁祸首是呼吸性粉尘。将呼吸 性粉尘从总尘中分离是呼吸性粉尘监测和尘肺病预警的重要前提。为了克服惯性冲击式、淘析式和旋风分离式等传统分离方法存在的频繁维护、二次扬尘等问题,采用理论研究与试验分析相结合的方法,厘清粉尘电迁移率与粉尘粒径的数学关系,建立粉尘荷电分离试验系统,并基于粉尘颗粒的电迁移特性提出一种呼吸性粉尘的荷电分离方法。根据我国煤炭行业标准MT 394—1995《呼吸性粉尘测量仪采样效能测定方法》,试验验证呼吸性粉尘荷电分离方法的分离效能。结果表明:该分离方法无需频繁维护,不会产生二次扬尘;呼吸性粉尘的分离效能与英国医学研究委员会提出的肺部沉积率曲线结果的最大偏差为4.24%,最小偏差为1.27%,均满足行业标准要求。

关键词:尘肺病; 电迁移特性; 呼吸性粉尘; 粉尘荷电分离; 分离效能

Abstract:Pneumoconiosis is the occupational disease with the highest number of cases in China, and continues to occur and grow at a rate of 10 000 annually, causing huge economic losses and adverse effects to society. The main culprit is respiratory dust. Separating respiratory dust from total dust is an important prerequisite for respiratory dust monitoring and early warning of pneumoconiosis. In order to overcome the problems of frequent maintenance and secondary dust raising in traditional separation methods such as inertial impact, elutriation analysis and cyclone separation, the mathematical relationship between dust electromigration rate and dust particle size was clarified by combining theoretical research and experimental analysis, and a dust charge separation test system was established. Based on the electromigration characteristics of dust particles, a charge separation method for respirable dust was proposed. According to MT 394-1995 Measurement Method for Sampling Efficiency of Respiratory Dust Measuring Instruments the separation efficiency of the charged separation method for respiratory dust is experimentally verified. The results show that this separation method does not require frequent maintenance and does not generate secondary dust. The separation efficiency of respiratory dust meets the standard requirements with a maximum deviation of 4.24% and a minimum deviation of 1.27%, compared to the lung sedimentation rate curve proposed by the British Medical Research Council(BMRC).

Keywords:pneumoconiosis; electromigration characteristic; respirable dust; dust charge separation; separation efficiency


参考文献(References):

[1]LI P W C,YU D S F,TAM S Y S, et al. The lived experience of patients and family caregivers in managing pneumoconiosis[J]. Qualitative Health Research, 2021, 31(9): 1645-1656.

[2]周浬皋. 呼吸性粉尘分离效能测试方法误差分析[J]. 矿业安全与环保, 2013, 40(6): 61-64.ZHOU L G. Error analysis of separating efficiency test method of respirable dust[J]. Mining Safety &Environmental Protection, 2013, 40(6): 61-64.

[3]惠立锋. 基于RSM的呼吸性粉尘旋风分离器分离效能数值模拟研究[J]. 煤炭学报, 2015, 40(7): 1692-1697.HUI L F. Numerical analysis on the respirable dust separation efficiency of cyclone separator using response surface methodology[J]. Journal of China Coal Society,2015, 40(7): 1692-1697.

[4]王杰, 郑林江. 煤矿粉尘职业危害监测技术及其发展趋势[J]. 煤炭科学技术, 2017, 45(11): 119-125.WANG J, ZHENG L J. Development tendency and monitoring technology of dust occupational hazard in coal mine[J]. Coal Science and Technology, 2017, 45(11): 119-125.

[5]ZHU X F, JIA Y T, SUN J H, et al. Configuration of air microfluidic chip for separating and grading respirable dust[J]. Journal of Physics: Conference Series, 2018, 14(1): 012017.

[6]BARONE T L, LEE T, CAUDA E G, et al. Segregation of respirable dust for chemical and toxicological analyses[J]. Archives of Environmental &Occupational Health, 2020, 76(3): 1-11.

[7]LI Y N, FU M Q, PANG W, et al. A combined virtual impactor and field-effect transistor microsystem for particulate matter separation and detection[J]. Nanotechnology and Precision Engineering, 2021, 4(1): 1231-1240.

[8]AUGUSTO B, MARCO P, JESSICA R, et al. Theoretical model and preliminary design of an innovative wet scrubber for the separation of fine particulate matter produced by biomass combustion in small size boilers[J]. Biomass and Bioenergy, 2018, 116: 60-71.

[9]WALKER R L T, CAUDA E, CHUBB L, et al. Complexity of respirable dust found in mining operations as characterized by X-ray diffraction and FTIR analysis[J]. Minerals, 2021, 11(4): 383-383.

[10]刘昌凤, 邵龙义, 龚铁强, 等. 煤矿呼吸性粉尘冲击采样器原理与设计探讨[J]. 中原工学院学报, 2006, 17(6): 5-8, 22.LIU C F, SHAO L Y, GONG T Q, et al. Discussion on principle and design of impactor for respirable dust sampling in underground mine[J]. Journal of Zhongyuan University of Technology, 2006, 17(6): 5-8, 22.

[11]李彦筑. 呼吸性粉尘虚拟冲击分离技术及分离器研究[D]. 北京: 煤炭科学研究总院, 2022.LI Y Z. Research on virtual impact separation technology and separator of respirable dust[D]. Beijing: China Coal Research Institute, 2022.

[12]ASHRY Y E, ELSHORBAGY K A,ABDELRAZEK A M. On the effect of solid particle sphericity on the tangential velocity in a cyclone separator[J]. Aerosol Science and Technology, 2022, 56(4): 323-336.

[13]杨杰. 基于电迁移原理的超细颗粒物粒径谱内建反演方法研究[D]. 合肥: 合肥工业大学, 2021.YANG J. Study on built in inversion method of ultrafine particle size spectrum based on electromigration principle[D]. Hefei: Hefei University of Technology, 2021.

[14]KONG W M, AMANATIDIS S, MAI H J, et al. The nano-scanning electrical mobility spectrometer (nSEMS) and its application to size distribution measurements of 1.5-25 nm particles[J]. Atmospheric Measurement Techniques, 2021, 14(8): 5429-5445.

[15]苏杨秀怡, 易俊, 李德文, 等. 粉尘颗粒群主动荷电特性试验研究[J]. 矿业安全与环保, 2021, 48(1): 28-32.SU-YANG X Y, YI J, LI D W, et al. Experimental study on active charging characteristic of dust particle group[J]. Mining Safety &Environmental Protection, 2021, 48(1): 28-32.

[16]WANG C M, ZHANG P R, JU H Q, et al. Electromigration separation of lithium isotopes: the multiple roles of crown ethers[J]. Chemical Physics Letters, 2022, 787: 1125-1132.

[17]HUANG S Q, HUANG P Z. The evolution of intragranular microcracks caused by interface migration induced by electromigration[J]. Journal of Mechanics of Materials and Structures, 2021, 16(4) : 487-500.

[18]RAVABDI S, MINENKOV A, MARDARE C C, et al. Gallium-enhanced aluminum and copper electromigration performance for flexible electronics[J]. ACS Applied Materials &Interfaces, 2021, 13(5): 6960-6974.

[19]惠立锋, 李德文, 郭永彩. 基于虚拟冲击原理的呼吸性粉尘连续分离技术[J]. 中南大学学报(自然科学版), 2022, 53(8): 3062-3070.

HUI L F, LI D W, GUO Y C. Continuous separation of respirable dust based on virtual impactor principle[J]. Journal of Central South University(Science and Technology), 2022, 53(8): 3062-3070.

[20]谢双. 基于虚拟冲击原理的呼吸性粉尘分离技术和分离器研究[D]. 重庆: 重庆科技学院, 2019.

XIE S. Research on respirable dust separation technology and separator based on virtual shock principle[D]. Chongqing: Chongqing University of Science and Technology, 2019.

[21]CAO B, CHEN W Y, SHEN Y, et al. BMRC: a bitmap-based maximum range counting approach for temporal data in sensor monitoring networks[J]. Sensors, 2017, 17(9): 1302-1309.

[22]WYPUTTA U, MCAVANEY B J. Influence of vegetation changes during the last glacial maximum using the BMRC atmospheric general circulation model[J]. Climate Dynamics, 2001, 17(12): 2112-2120.

[23]MISRA S, SUSSELL A L, WILSON S E, et al. Occupational exposure to respirable crystalline silica among US metal and nonmetal miners, 2000—2019[J]. American Journal of Industrial Medicine, 2023, 66(3): 199-212.