ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第4期
<返回第4期

制备方法对铈锰固溶体催化燃烧甲苯性能的影响

Effect of preparation methods on catalytic performance of cerium manganese solid solution for catalytic toluene combustion

陈世鸿1, 唐诗昌1, 庄檾希1a, 苏雅静1a, 黄俊诗1, 凌伟钊1,黄文京2, 程 高1,3, 李永峰1,3

(1. 广东工业大学 a. 轻工化工学院; b. 广东省教育厅清洁化学技术重点实验室, 广东 广州 510006;2. 广东绿园环保科技有限公司, 广东 梅州 514700;3. 化学与精细化工广东省实验室揭阳分中心(榕江实验室), 广东 揭阳 515200)


引用格式:陈世鸿, 唐诗昌, 庄檾希, 等. 制备方法对铈锰固溶体催化燃烧甲苯性能的影响[J]. 中国粉体技术, 2023, 29(4): 138-149.

CHEN S H, TANG S C, ZHUANG Q X, et al. Effect of preparation methods on catalytic performance of cerium manganese solid solution for catalytic toluene combustion[J]. China Powder Science and Technology, 2023, 29(4): 138-149.

DOI:10.13732/j.issn.1008-5548.2023.04.014

收稿日期:2022-11-13,修回日期:2023-04-26,在线出版时间:2023-06-26 10:14。

基金项目:国家自然科学基金项目,编号:22278086;广州市基础研究计划基础与应用基础研究项目,编号:202201010373;佛山市促进高校科技成果服务产业发展扶持项目,编号:zc02030000007。

第一作者简介:陈世鸿(1997—),男,硕士研究生,研究方向为环境催化。E-mail: 2406586194@qq.com。

通信作者简介:程高(1988—),男,讲师,博士,研究方向为环境催化。E-mail: chengg36@gdut.edu.cn。


摘要:以甲苯为代表的挥发性有机化合物的排放,导致大气污染问题加剧。为了开发一种高效的用于甲苯催化燃烧反应的催化剂,采用水热法、热分解法和共沉淀法制备3种Ce0.7Mn0.3O2样品,分别用于催化甲苯燃烧反应,并通过X射线衍射、扫描电镜、透射电镜、氮气物理吸附-脱附、 X射线光电子能谱、 H2程序升温还原、原位红外光谱测试对3种样品进行表征,探究制备方法对Ce0.7Mn0.3O2催化剂结构、形貌、化学性质和催化燃烧甲苯性能的影响。结果表明:3种方法制备的Ce0.7Mn0.3O2均为纳米颗粒;相较于其他2种方法,采用水热法制备的Ce0.7Mn0.3O2具有更丰富的表面Mn3+、表面氧空位以及较强的低温可还原性,因此在甲苯催化燃烧反应中表现出良好的催化活性,在218℃时甲苯的转化率达到90%;此外,该样品具有优异的稳定性,在218℃下进行50 h的稳定性测试后,仍能保持较高的甲苯转化率(约为90%);原位红外测试表明,水热法制备的Ce0.7Mn0.3O2样品表面的催化燃烧甲苯反应遵循Marse-van Krevelen机制。

关键词:铈锰固溶体; 甲苯; 催化燃烧反应

Abstract:With the aggravation of air pollution, the pollution of volatile organic compounds(VOCs) represented by toluene becomes more and more serious. In order to develop an efficient catalyst for toluene catalytic combustion reaction, three Ce0.7Mn0.3O2 samples were prepared by hydrothermal, thermal decomposition and precipitation methods for catalytic combustion of toluene. The three samples were characterized by X-Ray diffraction, the scanning electron microscopy, the transmission electron microscopy, N2 adsorption-desorption, X-ray photoelectron spectroscopy, H2 temperature programmed reduction and in-situ infrared spectrometer analysis. The effect of the preparation method on the structure, morphology, chemical properties and catalytic combustion performance of Ce0.7Mn0.3O2 catalyst was investigated. The results show that the three Ce0.7Mn0.3O2 samples exhibit the same shape of nanoparticle. Compared to the other two samples, Ce0.7Mn0.3O2 prepared by the hydrothermal method shows better catalytic activity for the catalytic combustion of toluene due to a more abundant surface Mn3+, surface oxygen vacancies and stronger low-temperature reduction. The 90% toluene conversion rate is achieved at 218 ℃. In addition, the sample has excellent stability, and still maintains a high toluene conversion rate(about 90%) after stability test at 218 ℃ for 50 h. In situ FTIR test shows that the catalytic combustion of toluene on the surface of the Ce0.7Mn0.3O2 samples prepared by hydrothermal method follows the Marse-van Krevelen mechanism.

Keywords:cerium manganese solid solution; toluene; catalytic combustion reaction


参考文献(References):

[1]LIU B J, JI J, ZHANG B G, et al. Catalytic ozonation of VOCs at low temperature: a comprehensive review[J]. Journal of Hazardous Materials, 2022, 422: 126847.

[2]MENG L Q, ZHAO H B. Low-temperature complete removal of toluene over highly active nanoparticles CuO-TiO2 synthesized via flame spray pyrolysis[J]. Applied Catalysis B: Environmental, 2019, 264: 118427.

[3]JIN Z H, WANG B D, MA L, et al. Air pre-oxidation induced high yield N-doped porous biochar for improving toluene adsorption[J]. Chemical Engineering Journal, 2020, 385: 123843.

[4]KIM J M, KIM J H, LEE C Y, et al. Toluene and acetaldehyde removal from air on to graphene-based adsorbents with microsized pores[J]. Journal of Hazardous Materials, 2018, 344: 458-465.

[5]FRAHN J, MALSCH G, MATUSCHEWSKI H, et al. Separation of aromatic/aliphatic hydrocarbons by photo-modified poly(acrylonitrile) membranes[J]. Journal of Membrane Science, 2004, 234(1/2): 55-65.

[6]WANNER P, ARAVENA R, FERNANDES J, et al. Assessing toluene biodegradation under temporally varying redox conditions in a fractured bedrock aquifer using stable isotope methods[J]. Water Research, 2019, 165: 114986.

[7]XIE R J, LEI D X, ZHAN Y J, et al. Efficient photocatalytic oxidation of gaseous toluene over F-doped TiO2 in a wet scrubbing process[J]. Chemical Engineering Journal, 2020, 386: 121025.

[8]ZHONG L X, BRANCHO J J, BATTERMAN S, et al. Experimental and modeling study of visible light responsive photocatalytic oxidation (PCO) materials for toluene degradation[J]. Applied Catalysis B: Environmental, 2017, 216: 122-132.

[9]CHEN C Y, ZHU J, CHEN F, et al. Enhanced performance in catalytic combustion of toluene over mesoporous Beta zeolite-supported platinum catalyst[J]. Applied Catalysis B: Environmental, 2013, 140/141: 199-205.

[10]FENG S Y, LIU J D, GAO B. Synergistic mechanism of Cu-Mn-Ce oxides in mesoporous ceramic base catalyst for VOCs microwave catalytic combustion[J]. Chemical Engineering Journal, 2022, 429: 132302.

[11]XIAO M L, YANG X Q, PENG Y, et al. Confining shell-sandwiched Ag clusters in MnO2-CeO2 hollow spheres to boost activity and stability of toluene combustion[J]. Nano Research, 2022, 15(8): 7042-7051.

[12]

A, DROZDEK M, DUDEK B, et al. Cobalt-containing BEA zeolite for catalytic combustion of toluene[J]. Applied Catalysis B: Environmental, 2017, 212: 59-67.

[13]MALDONADO-HODAR F J. Removing aromatic and oxygenated VOCs from polluted air stream using Pt-carbon aerogels: assessment of their performance as adsorbents and combustion catalysts[J]. Journal of Hazardous Materials, 2011, 194: 216-222.

[14]ZHAO S, HU F Y, LI J H. Hierarchical core-shell Al2O3@Pd-CoAlO microspheres for low-temperature toluene combustion[J]. ACS Catalysis, 2016, 6(6): 3433-3441.

[15]WANG Y Q, XUE Y F, ZHAO C C, et al. Catalytic combustion of toluene with La0.8Ce0.2MnO3 supported on CeO2 with different morphologies[J]. Chemical Engineering Journal, 2016, 300: 300-305.

[16]WAN J, TAO F, SHI Y J. Designed preparation of nano rod shaped CeO2-MnOx catalysts with different Ce/Mn ratios and its highly efficient catalytic performance for chlorobenzene complete oxidation: new insights into structure-activity correlations[J]. Chemical Engineering Journal, 202, 433P3: 1333788.

[17]ZHANG X D, BI F K, ZHU Z Q, et al. The promoting effect of H2O on rod-like MnCeOx derived from MOFs for toluene oxidation: a combined experimental and theoretical investigation[J]. Applied Catalysis B: Environmental, 2021, 297: 120393.

[18]GINO P, ROMULO C, MARIA R, et al. Preparation by co-precipitation of Ce-Mn based catalysts for combustion of n-hexane[J]. Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization, 2015, 70(10):621-632.

[19]LI J J, HU R S, ZHANG J G, et al. Influence of preparation methods of La2CoMnO6/CeO2 on the methane catalytic combustion[J]. Fuel, 2016, 178: 148-154.

[20]WANG L, XIE H K, WANG X D, et al. Preparation of LaMnO3 for catalytic combustion of vinyl chloride[J]. Chinese Journal of Catalysis, 2017, 38(8): 1406-1412.

[21]LUO Y J, LIN D F, ZHENG Y B, et al. MnO2 nanoparticles encapsuled in spheres of Ce-Mn solid solution: efficient catalyst and good water tolerance for low-temperature toluene oxidation[J]. Applied Surface Science, 2020, 504: 144481.

[22]WANG J G, YANG S F, SUN H H, et al. Highly improved soot combustion performance over synergetic MnxCe1-xO2 solid solutions within mesoporous nanosheets[J]. Journal of Colloid and Interface Science, 2020, 577: 355-367.

[23]TANHAEI M, MAHJOUB A R, SAFARIFARD V. Energy-efficient sonochemical approach for the preparation of nanohybrid composites from graphene oxide and metal-organic framework[J]. Inorganic Chemistry Communications, 2019, 102: 185-191.

[24]ZHANG C H, GUO Y L, GUO Y, et al. LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene[J]. Applied Catalysis B: Environmental, 2014, 148/149: 490-498.

[25]LI R Z, ZHANG L, ZHU S M, et al. Layered δ-MnO2 as an active catalyst for toluene catalytic combustion[J]. Applied Catalysis A: General, 2020, 602: 117715.

[26]CHOJNACKA A, MOLENDA M, CHMIELARZ L, et al. Ceria based novel nanocomposites catalysts MnxCe1-xO2/α-Al2O3 for low-temperature combustion of methanol[J]. Catalysis Today, 2015, 257: 104-110.

[27]WANG X Y, QIAN K, LI D. Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J]. Applied Catalysis B: Environmental, 2009, 86(3): 166-175.

[28]ZHANG W L, LI M Y, WANG X T, et al. Boosting catalytic toluene combustion over Mn doped Co3O4 spinel catalysts: Improved mobility of surface oxygen due to formation of Mn—O—Co bonds[J]. Applied Surface Science, 2022, 590: 153140.

[29]XIAO W D, GUO Q L, WANG E G. Transformation of CeO2(1 1 1) to Ce2O3 (0 0 0 1) films[J]. Chemical Physics Letters, 2003, 368(5/6): 527-531.

[30]PFAU A, SCHIERBAUM K D. The electronic structure of stoichiometric and reduced CeO2 surfaces: an XPS, UPS and HREELS study[J]. Surface Science, 1994, 321(1/2): 71-80.

[31]DU H W, WANG Y, ARANDIYAN H, et al. Design and synthesis of CeO2 nanowire/MnO2 nanosheet heterogeneous structure for enhanced catalytic properties[J]. Materials Today Communications, 2017, 11: 103-111.

[32]DONG C, QU Z P, JIANG X, et al. Tuning oxygen vacancy concentration of MnO2 through metal doping for improved toluene oxidation[J]. Journal of Hazardous Materials, 2020, 391: 122181.

[33]GENUINO H C, MENG Y, HORVATH D T, et al. Enhancement of catalytic activities of octahedral molecular sieve manganese oxide for total and preferential CO oxidation through vanadium Ion framework substitution[J]. Chem Cat Chem, 2013, 5(8): 2306-2317.

[34]MO S P, ZHANG Q, LI J Q, et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS[J]. Applied Catalysis B: Environmental, 2020, 264: 118464.

[35]CHEN J, CHEN X, YAN D X, et al. A facile strategy of enhancing interaction between cerium and manganese oxides for catalytic removal of gaseous organic contaminants[J]. Applied Catalysis B: Environmental, 2019, 250: 396-407.

[36]SHEN Q, ZHANG L Y, SUN N N, et al. Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation[J]. Chemical Engineering Journal, 2017, 322: 46-55.

[37]DU J P, QU Z P, DONG C, et al. Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach[J]. Applied Surface Science, 2018, 433: 1025-1035.

[38]LI X L, NIU Y F, ZHANG C W, et al. Catalytic combustion of toluene over broccoli-shaped Ce1Mn3Ox solid solution[J]. Chem Cat Chem, 2021, 13(19): 4223-4236.

[39]MO S P, ZHANG Q, LI J Q, et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS[J]. Applied Catalysis B: Environmental, 2020, 264: 44-58.

[40]FAN J, REN Q M, MO S P, et al. Transient in-situ DRIFTS investigation of catalytic oxidation of toluene over α-, γ- and β-MnO2[J]. Chem Cat Chem, 2020, 12(4): 1046-1054.

[41]WANG P F, WANG J, AN X W, et al. Generation of abundant defects in Mn-Co mixed oxides by a facile agar-gel method for highly efficient catalysis of total toluene oxidation[J]. Applied Catalysis B: Environmental, 2021, 282: 58-65.

[42]SUN H, LIU Z G, CHEN S, et al. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene[J]. Chemical Engineering Journal, 2015, 270: 58-65.