ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第4期
<返回第4期

不同因素对泡沫混凝土性能的影响

Influence of different factors on properties of foamed concrete

谢洪阳, 戴宜文, 董建军, 邓勇

(南昌航空大学 土木建筑学院, 江西 南昌 330063)


引用格式:谢洪阳, 戴宜文, 董建军, 等. 不同因素对泡沫混凝土性能的影响[J]. 中国粉体技术, 2023, 29(4): 120-129.

XIE H Y, DAI Y W, DONG J J, et al. Influence of different factors on the properties of foamed concrete[J]. China Powder Science and Technology, 2023, 29(4): 120-129.

DOI:10.13732/j.issn.1008-5548.2023.04.012

收稿日期:2022-10-09,修回日期:2022-12-14,在线出版时间:2023-06-13 10:56。

基金项目:国家自然科学基金项目,编号:52068054;南昌航空大学研究生创新专项资金项目,编号YC2022-130。

第一作者简介:谢洪阳(1973—),男,教授,博士,硕士生导师,研究方向为结构工程。E-mail: xiehongyang486@163.com。

通信作者简介:戴宜文(1999—),硕士研究生,研究方向为结构工程。E-mail: dyw2458751868@163.com。



摘要:为探索泡沫掺量(质量分数,下同)、砖粉掺量、水料比(质量比,下同)和HPMC(羟丙基甲基纤维素)掺量、冻融循环对掺砖粉泡沫混凝土性能的影响,开展四因素五水平的正交实验,结合功效系数法确定掺砖粉泡沫混凝土最优配合比:泡沫掺量为3%、砖粉掺量为30%、水料比为0.55、HPMC掺量为0.05%。结果表明:掺砖粉泡沫混凝土的抗压强度随泡沫掺量的增加呈下降趋势,随砖粉掺量、水料比和HPMC的增加呈现先上升后下降的趋势,且随着冻融循环次数的增加,掺砖粉泡沫混凝土的强度均不断减小,原因是泡沫混凝土内部的完整气孔充分吸水之后结冰,导致气孔孔壁被挤压产生裂缝,原先密闭的孔洞变为有害孔洞,且随着冻融循环次数的增加,大量微小裂缝会拓展汇集成贯穿裂缝,严重降低泡沫混凝土强度,极大地影响掺砖粉泡沫混凝土的耐久性。

关键词:泡沫混凝土; 砖粉; 正交实验; 水料比; 冻融循环; 功效系数法

Abstract:In order to explore the influence of foam content(mass fraction), brick powder content, water-material ratio, HPMC(hydroxy propyl methyl cellulose) content, and freeze-thaw cycle on the performance of brick powder mixed foam concrete, orthogonal experiments with 4 factors and 5 levels were carried out. Combined with the efficiency coefficient method, the optimal mixing ratio of brick powder foamed concrete was determined. The foam content was 3%, brick powder content was 30%, water-material ratio was 0.55 and HPMC content was 0.05%. The results show that compressive strength of foam concrete mixing brick powder with the increase of bubble content is on the decline, with brick powder, water ratio and the increase of HPMC presents the downward trend after rising first, and with the increase of freeze-thaw cycles, mixed powder foam concrete brick strength decreases continuously, the reason is that the bubble inside the concrete after complete stomatal fully absorbing water freezes. As a result, the pore wall is squeezed to produce rupture cracks, which lead to the previously closed holes becoming harmful holes. With the increase of the number of freeze-thaw cycles, a large number of small cracks will even expand and pool into penetrating cracks, which seriously reduce the strength of foamed concrete and greatly affect the durability of foamed concrete mixed with brick and powder.

Keywords:foam concrete; brick powder; orthogonal test; water-material ratio; freeze-thaw cycle; power coefficient method


参考文献(References):

[1]李秋义, 全洪珠, 秦原. 混凝土再生骨料[M]. 北京: 中国建筑工业出版社, 2011.

LI Q Y, QUAN H Z, QIN Y. Recycled aggregate for concrete[M]. Beijing: China Building Industry Press, 2011.

[2]张肖明, 黄沛增, 崔庆怡. 建筑垃圾再生微粉泡沫混凝土性能研究[J]. 混凝土与水泥制品, 2020(5): 96-98.

ZHANG X M, HUANG P Z, CUI Q Y. Study on properties of micronized foam concrete for construction waste recycling[J]. Concrete and Cement Products, 2020(5): 96-98.

[3]郭峻驿, 闫亚杰. 大掺量粉煤灰微珠泡沫混凝土试验研究[J]. 新型建筑材料, 2019, 46(1): 79-81.

GUO J Y, YAN Y J. Experimental study on large amount fly ash microbead foam concrete[J]. New Building Materials, 2019, 46(1): 79-81.

[4]林在健. 复掺粉煤灰矿渣对岩溶空洞泡沫混凝土性能影响研究[J]. 广东建材, 2021, 37(12): 4-6, 72.

LIN Z J. Study on the effect of mixed fly ash slag on the properties of karst cavity foam concrete[J]. Guangdong Building Materials, 2021, 37(12): 4-6, 72.

[5]金明山, 宋杨, 彭飞, 等. 粉煤灰泡沫混凝土抗冻性能研究[J]. 水利科技与经济, 2022, 28(7): 94-98.

JIN M S, SONG Y, PENG F, et al. Study on frost resistance of fly ash foam concrete[J]. Water Conservancy Science and Technology and Economy, 2022, 28(7): 94-98.

[6]林国忠. 粉煤灰及化学激发剂制备泡沫混凝土的试验研究[J]. 福建建筑, 2022(2): 67-70.

LIN G Z. Experimental study on preparation of foam concrete by fly ash and chemical initiator[J]. Fujian Architecture, 2022(2): 67-70.

[7]张松, 李如燕, 董祥, 等. 再生微粉有效代替水泥制备泡沫混凝土[J]. 硅酸盐通报, 2018, 37(9): 2948-2953.

ZHANG S, LI R Y, DONG X, et al. Foam concrete prepared by reclaimed powder instead of cement[J]. Bulletin of the Chinese Ceramass, 2018, 37(9): 2948-2953.

[8]KIRUBAJINY P, SAYANTHAN R, JAY S. Influence of recycled concrete aggregate on the foam stability of aerated geopolymer concrete[J]. Construction and Building Materials, 2021, 271.

[9]王选富, 安竹石, 谢涛, 等. 建筑垃圾再生泡沫混凝土研究[J]. 施工技术, 2018, 47(增刊2): 45-48.

WANG X F, AN Z S, XIE T, et al. Research on recycled foam concrete for construction waste[J]. Construction Technology, 2018, 47(Suppl.2): 45-48.

[10]CHANDNI T J, ANAND K B.Utilization of recycled waste as filler in foam concrete[J]. Journal of Building Engineering, 2018, 19: 154-160.

[11]SOON C N, KAW S L. Thermal conductivity of newspaper sandwiched aerated lightweight concretepanel[J]. Energy and Buildings, 2010, 42(12): 2452-2456.

[12]BENAZZOUK A, DOUZANE O, MEZREB K, et al. Thermal conductivity of cementconposites containing rubber waste particles: experimental study and modelling[J]. Construction and Building Materials, 2008, 22(4): 573-579.

[13]ZAHER M Y, RAVINESH C D, AMEER H, et al. Predicting compressive strength of lightweight foamed concrete using extreme learning machine model[J]. Advances in Engineering Software, 2018, 115: 112-125.

[14]虞犇, 王露, 朱优, 等. 碱激发再生微粉泡沫混凝土综述[J]. 四川水泥, 2022(9): 9-11.

YU B, WANG L, ZHU Y, et al. Review of alkali-excited recycled micronized foam concrete[J]. Sichuan Cement, 2022(9): 9-11.

[15]于君彦. 滨莱高速公路改扩建泡沫轻质土路基研究[D]. 济南: 山东大学, 2018.

YU J Y. Study on foam light soil subgrade for reconstruction and expansion of Binlai Expressway[D]. Jinan: Shandong University, 2018.

[16]中华人民共和国住房和城乡建设部. 气泡混合轻质土填筑工程技术规程: CJJ/T 177—2012[S]. 北京: 中国建筑工业出版社, 2012.

Ministry of Housing and Urban-Rural Development of the People′s Republic of China .Technical regulations for bubble mixed light soil filling engineering: CJJ/T 177—2012[S]. Beijing: China Building Industry Press, 2012.

[17]李应权, 朱立德, 李菊丽, 等. 泡沫混凝土配合比的设计[J]. 徐州工程学院学报(自然科学版), 2011, 26(2): 1-5, 90.

LI Y Q, ZHU L D, LI J L, et al. Design of foamed concret mix[J]. Journal of Xuzhou Institute of Technology(Natural Science Edition), 2011, 26(2): 1-5, 90.

[18]高允彦. 正交及回归试验设计方法[M]. 北京: 冶金工业出版社, 1988.

GAO Y Y. Orthogonal and regression experimental design methods[M]. Beijing: Metallurgical Industry Press, 1988.

[19]杨范轩, 史明辉, 牛洋洋, 等. 基于正交试验的泡沫混凝土配合比研究[C]//南昌航空大学. 第28届全国结构工程学术会议论文集(第Ⅲ册). 南昌, 2019: 91-96.

YANG F X, SHI M H, NIU Y Y, et al. Research on mix ratio of foam concrete based on orthogonal test[C]//Nanchang Hangkong University.Proceedings of the 28th National Conference on Structural Engineering(Volume III.). Nanchang, 2019: 91-96.

[20]马永炯, 杨安, 洪芬, 等. 基于正交试验的泡沫混凝土配合比设计[J]. 混凝土, 2021(7): 147-150.

MA Y J, YANG A, HONG F, et al. Design of mix ratio of foam concrete based on orthogonal test[J]. Concrete, 2021(7): 147-150.

[21]胡艳丽, 郝晋高, 赵向敏, 等. 泡沫轻质混凝土性能与孔结构关系研究[J]. 南京理工大学学报, 2019, 43(3): 363-366.

HU Y L, HAO J G, ZHAO X M, et al. Study on the relationship between properties and pore structure of foam lightweight concrete[J]. Journal of Nanjing University of Science and Technology, 2019, 43(3): 363-366.

[22]李方贤, 余其俊, 罗云峰, 等. 泡沫混凝土气孔结构数学表征及其分析[J]. 西南交通大学学报, 2018, 53(6): 1205-1210.

LI F X, YU Q J, LUO Y F, et al. Mathematical characterization and analysis of stomatal structure of foam concrete[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1205-1210.

[23]吴博, 赵法锁, 吴韶艳. 基于组合赋权-功效系数法的黄土边坡稳定性评价[J]. 灾害学, 2020, 35(2): 34-38.

WU B, ZHAO F S, WU S Y. Stability evaluation of loess slope based on combinatorial weighting-efficacy coefficient method[J]. Journal of Catastrophology, 2020, 35(2): 34-38.