吴 震1a, 王利强1, 徐立敏2, 高伟俊2
(1. 江南大学 a. 机械工程学院, b. 江苏省食品先进制造装备技术重点实验室, 江苏 无锡 214122;2. 江苏创新包装科技有限公司, 江苏 扬州 225600)
引用格式:吴震, 王利强, 徐立敏, 等. 基于静态和动态休止角的钛白粉离散元仿真参数标定[J]. 中国粉体技术, 2023, 29(4): 108-119.
WU Z, WANG L Q, XU L M, et al. Discrete element parameters calibration of titanium dioxide based on static and dynamic repose angles[J]. China Powder Science and Technology, 2023, 29(4): 108-119.
DOI:10.13732/j.issn.1008-5548.2023.04.011
收稿日期:2023-03-09,修回日期:2023-05-22,在线出版时间:2023-06-15 12:01。
基金项目:中央高校基本科研业务费专项资金项目,编号:JUSRP21115;江苏省食品先进制造装备技术重点实验室自主资助基金项目,编号:FMZ201902。
第一作者简介:吴震(1998—),男,硕士研究生,研究方向为包装工艺与机械。E-mail: wzhen19980718@163.com。
通信作者简介:王利强(1977—),男,教授,博士,博士生导师,研究方向为包装机械。E-mail: wlqcom@163.com。
摘要:粉体物料在进行离散元模拟前需要通过参数标定过程来获得精确的离散元仿真参数,现有的参数标定多以静态休止角作为单一的响应值,并不能充分体现粉体的真实性能。为了提高钛白粉离散元仿真参数的精度,选取钛白粉的静态休止角和动态休止角作为宏观响应指标,使用自制的测定装置测得钛白粉的静态和动态休止角的平均值;根据颗粒的尺寸相似原则和减小刚度原理对钛白粉颗粒的粒径和切变模量进行简化,并建立离散元仿真模型;通过单因素试验排除部分对休止角影响较小的离散元仿真参数;应用Box-Behnken试验分别建立静态和动态休止角的二阶回归方程,以实际测定的休止角为目标值对2个回归方程进行寻优求解,获得最优的离散元仿真参数组合;对离散元仿真参数进行实验验证,实现对钛白粉离散元仿真参数标定。结果表明:当钛白粉-钛白粉静摩擦系数为0.51,滚动摩擦系数为0.29,钛白粉-不锈钢静摩擦系数为0.62,滚动摩擦系数为0.17时,钛白粉的离散元仿真参数值组合最优;仿真得到的静态和动态休止角分别为40.4°、 66.2°,与实际测定值的相对误差分别为1.22%、 1.07%。
关键词:钛白粉; 颗粒简化; 静态休止角; 动态休止角; 离散单元法; 参数标定
Abstract:Before the discrete element simulation of powder materials, it is necessary to obtain accurate discrete element simulation parameters through the parameter calibration process. The existing parameter calibration mostly takes the static angle of repose as a single response value, which can not fully reflect the real performance of powder. In order to improve the precision of discrete element simulation parameters of titanium dioxide, static angle of repose and dynamic angle of titanium dioxide were selected as macro-response indexes. Mean values of static and dynamic repose angles of titanium dioxide were measured by self-made measuring devices. Particle size and cutting modulus of titanium dioxide were simplified according to the principle of particle size similarity and stiffness reduction, and the discrete element simulation model was established. The discrete element simulation parameters which have little effect on the angle of repose were excluded by single factor test. Box-Behnken test was used to establish the second order regression equations of static and dynamic angle of repose, and the optimal discrete element simulation parameter combination was obtained by taking the actual measured angle of repose as the target value. The discrete element simulation parameters were verified by experiments, and the calibration of titanium dioxide simulation parameters was realized. The results show that when the static friction coefficient of titanium dioxide-titanium dioxide is 0.51, rolling friction coefficient is 0.29,static friction coefficient of titanium dioxide-stainless steel is 0.62, and rolling friction coefficient is 0.17, the discrete element simulation parameter combination of titanium dioxide is the best. The static and dynamic repose angles obtained by simulation are 40.4° and 66.2° respectively, and the relative errors with measured values are 1.22% and 1.07%, respectively.
Keywords:titanium dioxide; particle simplification; static angle of repose;dynamic angle of repose;discrete element method; parameter calibration
参考文献(References):
[1]El-KASSEM B, SALLOUM N, BRINZ T, et al. A multivariate regression parametric study on DEM input parameters of free-flowing and cohesive powders with experimental data-based validation[J]. Computational Particle Mechanics, 2021, 8(1): 87-111.
[2]COETZEE C J. Review:calibration of the discrete element method[J]. Powder Technology, 2017, 310: 104-142.
[3]韩伟, 王绍宗, 张倩, 等. 基于JKR接触模型的微米级颗粒离散元参数标定[J]. 中国粉体技术, 2021, 27(6): 60-69.
HAN W, WANG S Z, ZHANG Q, et al. Discrete element parameter calibration of micron sized powder particles based on JKR contact model[J]. China Powder Science and Technology, 2021, 27(6): 60-69.
[4]孙景彬, 刘琪, 杨福增, 等. 黄土高原坡地土壤与旋耕部件互作离散元仿真参数标定[J]. 农业机械学报, 2022, 53(1): 63-73.
SUN J B, LIU Q, YANG F Z, et al. Calibration of discrete element simulation parameters of sloping soil on loess plateau and its interaction with rotary tillage components[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 63-73.
[5]ZHAO L, ZHOU H P, XU L Y, et al. Parameter calibration of coconut bran substrate simulation model based on discrete element and response surface methodology[J]. Powder Technology, 2022, 395: 183-194.
[6]石辰风, 杨茂蕊, 唐正馨, 等. 中药浸膏粉离散元模拟参数标定方法研究[J]. 中草药, 2020, 51(24): 6205-6212.
SHI C F, YANG M R, TANG Z X, et al. Calibration of discrete element simulation parameters of Chinese medicine extractpowders[J]. Chinese Traditional and Herbal Drugs,2020, 51(24): 6205-6512.
[7]ALIZADEH M, ASACHI M, GHADIRI M, et al. A methodology for calibration of DEM input parameters in simulation of segregation of powder mixtures: a special focus on adhesion[J]. Powder Technology, 2018, 339: 789-800.
[8]KETTERHAGEN W, WASSGREN C. A perspective on calibration and application of DEM models for simulation of industrial bulk powder processes[J]. Powder Technology, 2022, 402: 117301.
[9]任建莉, 周龙海, 韩龙, 等. 基于颗粒缩放理论的垂直螺旋输送离散模拟[J]. 过程工程学报, 2017, 17(5): 936-943.
REN J L, ZHOU L H, HAN L, et al. Discrete simulation of vertical screw conveyor based on particle scaling theory[J]. The Chinese Journal of Process Engineering, 2017, 17(5): 936-943.
[10]HU Y Z, CHAN E L, TSUJI T, et al. Geometric similarity on interparticle force evaluation for scaled-up DEM particles[J]. Powder Technology, 2022, 404: 117483.
[11]LOMMEN S, SCHOTT D, LODEWIJKS G. DEM speedup:stiffness effects on behavior of bulk material[J]. Particuology, 2014, 12: 107-112.
[12]CHEN S, LIU W W, LI S Q. A fast adhesive discrete element method for random packings of fine particles[J]. Chemical Engineering Science, 2019, 193: 336-345.
[13]ROESSLER T, KATTERFELD A. Scaling of the angle of repose test and its influence on the calibration of DEM parameters using upscaled particles[J]. Powder Technology, 2018, 330: 58-66.
[14]HOSHISHIMA C, OHSAKI S, NAKAMURA H, et al. Parameter calibration of discrete element method modelling for cohesive and non-spherical particles of powder[J]. Powder Technology, 2021, 386: 199-208.
[15]CHEN X Z, ELLIOTT J A. On the scaling law of JKR contact model for coarse-grained cohesive particles[J]. Chemical Engineering Science, 2020, 227: 115906.
[16]FENG Y T, HAN K, OWEN D R J, et al. On upscaling of discrete element models: similarity principles[J]. Engineering Computations, 2009, 26(6): 599-609.
[17]H☞RVIG J, KLEINHANS U, WIELAND C, et al. On the adhesive JKR contact and rolling models for reduced particle stiffness discrete element simulations[J]. Powder Technology, 2017, 319: 472-482.
[18]TISCAR J M, ESCRIG A, MALLOL G, et al. DEM-based modelling framework for spray-dried powders in ceramic tiles industry: part I: calibration procedure[J]. Powder Technology, 2019, 356(C): 818-831.
[19]魏志钢, 张红星, 李前树, 等. 二氧化钛(TiO2)表面能的理论研究[J]. 高等学校化学学报, 2008(4): 824-826.
WEI Z G, ZHANG H X, LI Q S, et al. Theoretical study on the surface energy of TiO2 rutile[J]. Chemical Journal of Chinese Universities, 2008(4): 824-826.
[20]WANG Y J, CHANG J, TAN L N, et al. Elastic properties of rutile TiO2 at high temperature[J]. Chinese Physics Letters, 2007,24(9): 2642-2645.
[21]YAN Z, WILKINSON S K, STITT E H, et al. Discrete element modelling (DEM) input parameters: understanding their impact on model predictions using statistical analysis[J]. Computational Particle Mechanics,2015,2(3): 283-299.
[22]El-KASSEM B, SALLOUM N, BRINZ T, et al. A semi-automated DEM parameter calibration technique of powders based on different bulk responses extracted from auger dosing experiments[J]. KONA Powder and Particle Journal, 2021, 38: 235-250.
[23]MASSAH J, KHAZAEI J. Simultaneous measurement of rice grain friction coefficient and angle of repose using rotating cylinders[J]. Journal of Applied Botany and Food Quality, 2022, 95: 60-66.