ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第4期
<返回第4期


生物质基单原子催化剂制备与改性及其应用研究进展

Research progress in preparation, modification and application of biomass-based single-atom catalysts

纪玉祺, 于子函, 闫良国, 宋 雯

(济南大学 水利与环境学院, 山东 济南 250022)


引用格式:纪玉祺, 于子函, 闫良国, 等. 生物质基单原子催化剂制备与改性及其应用研究进展[J]. 中国粉体技术, 2023, 29(4): 100-107.

JI Y Q, YU Z H, YAN L G, et al. Research progress in preparation, modification and application of biomass-based single-atom catalysts[J]. China Powder Science and Technology, 2023, 29(4): 100-107.

DOI:10.13732/j.issn.1008-5548.2023.04.010

收稿日期:2023-03-14,修回日期:2023-05-15,在线出版时间:2023-05-26 11:01。

基金项目:国家自然科学基金项目,编号:52000087;山东省自然科学基金项目,编号:ZR2020QE229。

第一作者简介:纪玉祺(1999—),男,硕士研究生,研究方向为水污染控制技术。E-mail: 1079934246@qq.com。

通信作者简介:宋雯(1990—),女,讲师,博士,硕士生导师,研究方向为环境功能材料。E-mail: stu_songw@ujn.edu.cn。


摘要:为减少对钯、铂、金等贵金属的消耗,改善环境污染和能源危机的现状,综述生物质基单原子催化剂的制备与改性方法,包括热解法、湿化学法、电化学沉积法、原位合成法、生物质络合法等;根据生物质基单原子催化剂具有均一分散性、较大的比表面积、催化活性和选择性优等特点,介绍生物质基单原子催化剂在污水处理、二氧化碳还原、有机化学合成、氧还原反应等领域中的应用。指出生物质基单原子催化剂作为高效、环保、低成本的功能材料,未来的研究重点应是研发更有效、更可控的生物质基单原子催化剂制备方法,并通过降低制备成本、改善工艺条件等推动生物质基单原子催化剂的产业化应用。

关键词:单原子催化剂; 生物质; 制备; 改性; 应用

Abstract:In order to reduce the consumption of palladium, platinum, gold and other precious metals, improve the situation of environmental pollution and energy crisis, the preparation and modification methods of biomass based single-atom catalysts were reviewed, including pyrolysis, wet chemistry, electrochemical deposition, in situ synthesis, biomass compound method, etc. Based on the characteristics of homogeneous dispersion, high surface area, catalytic activity and selectivity of biomass based single-atom catalysts, the application of biomass based single-atom catalysts in wastewater treatment, carbon dioxide reduction, organic chemical synthesis, oxygen reduction reaction and other fields was introduced. It is pointed out that biomass-based single-atom catalysts are functional materials with high efficiency, environmental protection and low cost. The future research should be focus on developing more effective and controllable preparation methods of biomass-based single-atom catalysts, and promoting the industrialization application of biomass-based single-atom catalysts by reducing the preparation cost and improving the process conditions.

Keywords:single-atom catalysts; biomass; preparation; modification; application


参考文献(References):

[1]YANG X F, WANG A Q, QIAO B T, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748.

[2]LI X, HU K, HUANG Y Z, et al. Upcycling biomass waste into Fe single atom catalysts for pollutant control[J]. Journal of Energy Chemistry, 2022, 69(6): 282-291.

[3]QIAO B T, WANG A, YANG X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641.

[4]LANG R, XI W, LIU J C, et al. Non defect-stabilized thermally stable single-atom catalyst[J]. Nature Communications, 2019, 10(1): 234.

[5]LIU J Y. Catalysis by supported single metal atoms[J]. ACS Catalysis, 2016, 7(1): 34-59.

[6]WONG A, LIU Q, GRIFFIN S, et al. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports[J]. Science, 2017, 358(6369): 1427-1430.

[7]LI W H, YANG J R, WANG D S, et al. Striding the threshold of an atom era of organic synthesis by single-atom catalysis[J]. Chem, 2022, 8(1): 119-140.

[8]CAMILA RC, PHILIPPE S. Single atom catalysts on carbon-based materials[J]. ChemCatChem, 2018, 10(22): 5058-5091.

[9]ZHENG T T, JIANG K, TA N, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst[J]. Joule, 2019, 3(1): 265-278.

[10]LI Y H, CHEN B X, DUAN X Z, et al. Atomically dispersed Fe-N-P-C complex electrocatalysts for superior oxygen reduction[J]. Applied Catalysis: B: Environmental, 2019, 249(3): 306-315.

[11]ZHAO H Y, ZHANG C X, LI H, et al. One-dimensional nanomaterial supported metal single-atom electrocatalysts: synthesis, characterization and applications[J]. Nano Select, 2021, 2(11): 2072-2111.

[12]GUO Z, XIE Y B, XIAO J D, et al. Single-atom Mn-N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution[J]. Journal of the American Chemical Society, 2019, 141(30): 12005-12010.

[13]HE T W, SANTIAGO A R P, DU A J. Atomically embedded asymmetrical dual-metal dimers on N-doped graphene for ultra-efficient nitrogen reduction reaction[J]. Journal of Catalysis, 2020, 388(5): 77-83.

[14]SONG H R, DU R, WANG Y W, et al. Anchoring single atom cobalt on two-dimensional MXene for activation of peroxymonosulfate[J]. Applied Catalysis: B: Environmental, 2021, 286(1): 119898.

[15]YADAV D K, SINGH D K, GANESAN V. Recent strategy(ies) for the electrocatalytic reduction of CO2: Ni single-atom catalysts for the selective electrochemical formation of CO in aqueous electrolytes[J]. Current Opinion in Electrochemistry, 2020, 22(4): 87-93.

[16]LU Y B, ZHANG Z H, WANG H M, et al. Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2[J]. Applied Catalysis: B: Environmental, 2021, 292(1): 120162.

[17]PENG Y, LU B Z, CHEN S W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage[J]. Advanced Materials, 2018, 30(48): 1801995.

[18]LI X N, YANG X F, HUANG Y Q, et al. Supported noble-metal single atoms for heterogeneous catalysis[J]. Advanced Materials, 2019, 31(50): 1902031.

[19]HE H, WANG H H, LIU J J, et al. Research progress and application of single-atom catalysts: a review[J]. Molecules, 2021, 26(21): 6501.

[20]TIAN C C, ZHANG H Y, ZHU X, et al. A new trick for an old support: stabilizing gold single atoms on LaFeO3 perovskite[J]. Applied Catalysis: B: Environmental, 2020, 261: 118178.

[21]DENG M, XIA M J, WANG Y Y, et al. Synergetic catalysis of p-d hybridized single-atom catalysts: first-principles investigations[J]. Journal of Materials Chemistry, 2022, 10(24): 13066-13073.

[22]LOY A C M, TENG S Y, HOW B S, et al. Elucidation of single atom catalysts for energy and sustainable chemical production: synthesis, characterization and frontier science[J]. Progress in Energy and Combustion Science, 2023, 96: 101074.

[23]LAI W H, MIAO Z C, WANG Y X, et al. Atomic-local environments of single-atom catalysts: synthesis, electronic structure and activity[J]. Advanced Energy Materials, 2019, 9(43): 1900722.

[24]LIU J C, TANG Y, WANG Y G, et al. Theoretical understanding of the stability of single-atom catalysts[J]. National Science Review, 2018, 5(5): 638-641.

[25]LI X N, HUANG X, XI S B, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis[J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475.

[26]LIU J C, WANG Y G, LI J. Toward rational design of oxide-supported single-atom catalysts: atomic dispersion of gold on ceria[J]. Journal of the American Chemical Society, 2017, 139(17): 6190-6199.

[27]YU J, CAO C Y, JIN H Q, et al. Uniform single atomic Cu1-C4 sites anchored in graphdiyne for hydroxylation of benzene to phenol[J]. National Science Review, 2022, 9(9): 238-245.

[28]HUANG L Y, ZHANG H, CHENG Y J, et al. Quasi-continuous synthesis of cobalt single atom catalysts for transfer hydrogenation of quinoline[J]. Chinese Chemical Letters, 202, 33(5): 2569-2572.

[29]ZHOU H, HONG S, ZHANG H, et al. Toward biomass-based single-atom catalysts and plastics: highly active single-atom Co on N-doped carbon for oxidative esterification of primary alcohols[J]. Applied Catalysis: B: Environmental, 2019, 256: 117767.

[30]QI Y F, LI J, ZHANG Y Q, et al. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: role of single cobalt and electron transfer pathway[J]. Applied Catalysis: B: Environmental, 2021, 286(1): 119910.

[31]ZHANG Z P, GAO X J, DOU M L, et al. Biomass derived N-doped porous carbon supported single Fe atoms as superior electrocatalysts for oxygen reduction[J]. Small, 2017, 13(22): 1604290.

[32]ZHANG L Z, FISCHER J M T A, JIA Y, et al. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction[J]. Journal of the American Chemical Society, 2018, 140(34): 10757-10763.

[33]ZHANG Z R, FENG C, LIU C X, et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts[J]. Nature Communication, 2020, 11(1): 1215.

[34]WANG X L, DU J, ZHANG Q H, et al. In situ synthesis of sustainable highly efficient single iron atoms anchored on nitrogen doped carbon derived from renewable biomass[J]. Carbon, 2020, 157(10): 614-621.

[35]CHEN C, MA T F, SHANG Y N, et al. In-situ pyrolysis of enteromorpha as carbocatalyst for catalytic removal of organic contaminants: considering the intrinsic N/Fe in enteromorpha and non-radical reaction[J]. Applied Catalysis: B: Environmental, 2019, 250(3): 382-395.

[36]WANG Y Q, YU B Y, LIU K, et al. Co single-atoms on ultrathin N-doped porous carbon by biomass complexation strategy for high performance metal-air batteries[J]. Journal of Materials Chemistry A, 2020, 8(4): 2131-2139.

[37]HUANG L Z, ZHOU C, SHEN M L, et al. Persulfate activation by two-dimensional MoS2 confining single Fe atoms: performance, mechanism and DFT calculations[J]. Journal of Hazardous Materials, 2020, 389: 122137.

[38]AN S, ZHANG G H, WANG T W, et al. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes[J]. ACS Nano, 2018, 12(9): 9441-9450.

[39]YIN Y, SHI L, LI W L, et al. Boosting Fenton-like reactions via single atom Fe catalysis[J]. Environmental Science and Technology, 2019, 53(19): 11391-11400.

[40]LI Y, YANG T, QIU S H, et al. Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species[J]. Chemical Engineering Journal, 2020, 389: 124382.

[41]PENG X M, WU J Q, ZHAO Z L, et al. Activation of peroxymonosulfate by single atom Co-N-C catalysts for high-efficient removal of chloroquine phosphate via non-radical pathways: electron-transfer mechanism[J]. Chemical Engineering Journal, 2022, 429: 132245.

[42]LI X, HU K, HUANG Y Z, et al. Upcycling biomass waste into Fe single atom catalysts for pollutant control[J]. Journal of Energy Chemistry, 2022, 69(6): 282-291.

[43]WANG L Q, HUANG L, LIANG F, et al. Preparation, characterization and catalytic performance of single-atom catalysts[J]. Chinese Journal of Catalysis, 2017, 38(9): 1528-1539.

[44]马爽爽. 单原子Ni催化剂的制备及其在CO2电催化还原中的应用研究[D]. 北京: 北京工业大学, 2020.

MA S S. Preparation of single-atom Ni catalysts and their application in electrocatalytic reduction of CO2[D]. Beijing: Beijing University of Technology, 2020.

[45]XIANG T, HU L, SONG Y. Single-atom catalysts-enabled reductive upgrading of CO2[J]. ChemCatChem, 2021, 13(23): 4859-4877.

[46]HE S, JI D, ZHANG J W, et al. Understanding the origin of selective reduction of CO2 to CO on single-atom nickel catalyst[J]. Journal of Physical Chemistry B, 2020, 124(3): 511-518.

[47]ABBAS S A, SONG J T, TAN Y C, et al. Synthesis of a nickel single-atom catalyst based on Ni-N4-xCx active sites for highly efficient CO2 reduction utilizing a gas diffusion electrode[J]. ACS Applied Energy Materials, 2020, 3(9): 8739-8745.

[48]MALTA G, KONDRAT A S, FREAKLEY J S, et al. Identification of single-site gold catalysis in acetylene hydrochlorination[J]. Science, 2017, 355(6332): 1399-1403.

[49]KAISER S K, LIN R H, MITCHELL S, et al. Controlling the speciation and reactivity of carbon-supported gold nanostructures for catalysed acetylene hydrochlorination[J]. Chemical Science, 2019, 10(2): 359-369.

[50]LEE J H, KIM H S, JANG J H, et al. Atomic-scale engineered Fe single-atom electrocatalyst based on waste pig blood for high-performance AEMFCs[J]. ACS Sustainable Chemistry and Engineering, 2021, 9(23): 7863-7872.