ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第4期
<返回第4期

纳米金@石墨烯复合多孔材料还原4-硝基苯酚

Reduction of 4-nitrophenol with nano-gold@graphene composite porous material

张承昕1, 徐 昊2, 王余莲1, 安明艳1, 王 宇1, 袁志刚1, 张 武1, 李 闯1, 郭明忠1, 苏德生3,4

1. 沈阳理工大学 材料科学与工程学院, 辽宁 沈阳 110159;

2. 中国兵器工业集团第五二研究所烟台事业部, 山东 烟台 264003;

3. 辽宁丹炭科技集团有限公司, 辽宁 丹东 118100;

4. 辽宁省超高功率石墨电极材料专业技术创新中心, 辽宁 丹东 118100


引用格式:张承昕, 徐昊, 王余莲, 等. 纳米金@石墨烯复合多孔材料还原4-硝基苯酚[J]. 中国粉体技术, 2023, 29(4): 80-93.

ZHANG C X, XU H, WANG Y L, et al. Reduction of 4-nitrophenol with nano-gold@graphene composite porous material[J]. China Powder Science and Technology, 2023, 29(4): 80-93.

DOI:10.13732/j.issn.1008-5548.2023.04.008

收稿日期:2023-02-14,修回日期:2023-03-20,在线出版时间:2023-06-07 13:24。

基金项目:国家自然科学基金项目,编号:51804200; 辽宁省教育厅科学研究青年人才项目,编号:LJKZ0246;辽宁省科技厅应用基础研究计划项目,编号:2022JH2/101300111; 沈阳市科技计划项目, 编号: 22-322-3-03;沈阳理工大学2021年引进高层次人才科研支持经费项目,编号:1010147001011。

第一作者简介:张承昕(1989—),男,讲师,博士,研究方向为有机多孔材料制备及应用。E-mail: zhcx1989@sylu.edu.cn。

通信作者简介:王余莲(1986—),女,教授,博士,硕士生导师,研究方向为功能矿物材料制备及应用。E-mail: ylwang0908@163.com。


摘要:以负载纳米金颗粒的还原石墨烯(APR)为二维模板,采用溶剂编织法在石墨烯表面成功构建具有多孔结构的超交联聚合物(hyper-crosslinked polymer, HCP)并命名为APfR-HCP,探讨复合材料比表面积的变化及还原4-硝基苯酚(4-NP)的性能。结果表明:该新型复合材料具有较大的比表面积(568 m2/g)和丰富的孔道结构;多孔层结构的存在可以快速吸附水体中的小分子有机污染物并富集到金纳米颗粒表面,大大提升复合材料对常见有机污染物4-NP的催化性能;同时还可以有效阻止金纳米颗粒的团聚。APfR-HCP复合多孔材料可以在4 min内迅速将4-NP还原为4-氨基苯酚(4-AP),反应速率常数K可达1.10 min-1。APfR-HCP复合多孔材料的催化效率远大于模板APR(K=0.068 min-1),并且具有良好的循环利用性,循环使用5次后仍具有良好的催化性能。

关键词:纳米金催化; 石墨烯; 多孔结构; 复合材料; 4-硝基苯酚还原

Abstract:Using reduced graphene loaded with gold nanoparticles(APR) as two-dimensional template, hyper-crosslinked polymer(HCP) porous layer with abundant pore structure was successfully constructed on the surface of graphene by solvent knitting method and named APfR-HCP. The change of specific surface area of the composite and its performance for reducing 4-nitrophenol(4-NP) were discussed. The results show that this novel composite material represents a high specific surface area(568 m2/g) and abundant pore structure. The porous layer structure can quickly absorb small molecular organic pollutants in water and concentrate on the surface of gold nanoparticles, which greatly improving the catalytic performance of the composite material for the common organic pollutant 4-NP. Meanwhile, the porous layer can effectively prevent the aggregation of gold nanoparticles. The APfR-HCP composite porous material can rapidly reduce 4-NP to 4-aminophenol(4-AP) within 4 minutes,the reaction rate constantKcan be up to 1.10 min-1. The catalytic efficiency of APfR-HCP composite porous material is much higher than that of the template APR(K=0.068 min-1). Moreover, the material represents good recyclability, which can still maintain good catalytic performance after 5 cycles.

Keywords:nano-gold catalysis; graphene; porous structure; composite material; 4-nitrophenol reduction


参考文献(References):

[1]WANG Q, WEI Z, LI J, et al. Hierarchical-structured Pd nanoclusters catalysts x-PdNCs/CoAl(O) /rGO-T by the captopril-capped Pd cluster precursor method for the highly efficient 4-nitrophenol reduction[J]. ACS Applied Materials &Interfaces, 2022, 14(24): 27775-27790.

[2]顾傲天, 谭伟洋, 李智颖,等. Ag-MMOFs复合材料的制备及其对硝基苯酚的降解作用[J]. 中国粉体技术, 2022, 28(1): 15-23.

GU A T, TAN W Y, LI Z Y, et al. Preparation of Ag-MMOFs composite and its degradation properties on nitrophenol[J]. China Powder Science and Technology, 2022, 28(1): 15-23.

[3]GODAIN A, SPURR M W A, BOGHANI H C, et al. Detection of 4-nitrophenol, a model toxic compound, using multi-stage microbial fuel cells[J]. Frontiers in Environmental Science, 2020, 8: 5.

[4]ERIKA D, NURDINI N, MULYANI I, et al. Amine-functionalized ZSM-5-supported gold nanoparticles as a highly efficient catalyst for the reduction of p-nitrophenol[J]. Inorganic Chemistry Communications, 2023, 147: 110253.

[5]吴洪花, 祖凤华, 付山, 等. Ag@硅氧倍半聚合物的合成及其对对硝基苯酚的催化还原性能[J]. 无机化学学报, 2021, 37(11): 1961-1969.

WU H H, ZU F H, FU S, et al. Ag@Silsequioxanes: synthesis and its catalytic reduction performance for p-nitrophenol[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(11): 1961-1969.

[6]FADHL I, ERIKA D, MARDIANA S, et al. Nanocasting nanoporous nickel oxides from mesoporous silicas and their comparative catalytic applications for the reduction of p-nitrophenol[J]. Chemical Physics Letters, 2022, 803: 139809.

[7]SANKAR M, HE Q, ENGEL R V, et al. Role of the support in gold-containing nanoparticles as heterogeneous catalysts[J]. Chemical Reviews, 2020, 120(8): 3890-3938.

[8]WICAKSONO W P, KADIA G T M, AMALIA D, et al. A green synthesis of gold-palladium core-shell nanoparticles using orange peel extract through two-step reduction method and its formaldehyde colorimetric sensing performance[J]. Nano-structures &Nano-objects, 2020, 24: 100535.

[9]ISHIDA T, MURAYAMA T, TAKETOSHI A, et al. Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes[J]. Chemical Reviews, 2020, 120(2): 464-525.

[10]LIU L, CORMA A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles[J]. Chemical Reviews, 2018, 118(10): 4981-5079.

[11]LIU X, IOCOZZIA J, WANG Y, et al. Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation[J]. Energy &Environmental Science, 2017, 10(2): 402-434.

[12]NAVEEN M H, KHAN R, BANG J H. Gold nanoclusters as electrocatalysts: atomic level understanding from fundamentals to applications[J]. Chemistry of Materials, 2021, 33(19): 7595-7612.

[13]QIN L, HUANG D, XU P, et al. In-situ deposition of gold nanoparticles onto polydopamine-decorated g-C3N4 for highly efficient reduction of nitroaromatics in environmental water purification[J]. Journal of Colloid and Interface Science, 2019, 534: 357-369.

[14]QIN L, YI H, ZENG G, et al. Hierarchical porous carbon material restricted Au catalyst for highly catalytic reduction of nitroaromatics[J]. Journal of Hazardous Materials, 2019, 380: 120864.

[15]LIU J, HEIDRICH S, LIU J, et al. Encapsulation of Au55 clusters within surfacesupported metal-organic frameworks for catalytic reduction of 4-nitrophenol[J]. ACS Applied Nano Materials, 2021, 4(1): 522-528.

[16]HU C, YANG C, WANG X, et al. Rapid and facile synthesis of Au nanoparticle-decorated porous MOFs for the efficient reduction of 4-nitrophenol[J]. Separation and Purification Technology, 2022, 300: 121801.

[17]LIU Y, DONG H, HUANG H, et al. Electron-deficient Au nanoparticles confined in organic molecular cages for catalytic reduction of 4-nitrophenol[J]. ACS Applied Nano Materials, 2022, 5(1): 1276-1283.

[18]ZHAO Y, BI S, GAO F, et al. Preparation of Cu2O/Au composite nanomaterials for effective reduction of 4-nitrophenol[J]. ChemistrySelect, 2023, 8(8): e202204665.

[19]原晓菲, 钟睿, 洪若瑜, 等. 等离子体法制备及改性石墨烯粉体的研究进展[J]. 中国粉体技术, 2022, 28(3): 96-106.

YUAN X F, ZHONG R, HONG R Y, et al. Research progress in plasma preparation and modification of graphene powder[J]. China Powder Science and Technology, 2022, 28(3): 96-106.

[20]KHADEM A H, HASAN T U, RAHMAN A N M M, et al. Fabrication, properties, and performance of graphene-based textile fabrics for supercapacitor applications: a review[J]. Journal of Energy Storage, 2022, 56: 105988.

[21]梁继海, 钟世华. 有机多孔材料的应用研究进展[J]. 精细化工中间体, 2022, 52(6): 15-22.

LIANG J H, ZHONG S H. The application of organic porous materials[J]. Fine Chemical Intermediates, 2022, 52(6): 15-22.

[22]YUE C, XING Q, SUN P, et al. Enhancing stability by trapping palladium inside N-heterocyclic carbene-functionalized hypercrosslinked polymers for heterogeneous C—C bond formations[J]. Nature Communications, 2021, 12(1): 1875.

[23]EISEN C, GE L, SANTINI E, et al. Hypercrosslinked polymer supported NHC stabilized gold nanoparticles with excellent catalytic performance in flow processes[J]. Nanoscale Advances, 2023, DOI: 10.1039/D2NA00799A.

[24]GUTIERREZ C A, RUIZ H A R, VEGA C J F, et al. A review of top-down and bottom-up synthesis methods for the production of graphene, graphene oxide and reduced graphene oxide[J]. Journal of Materials Science, 2022, 57(31): 14543-14578.

[25]LIU D, WANG Z, MA Y, et al. Au-CuxOy nanoparticles encapsulated in hollow porous silica nanospheres as efficient catalysts for nitrophenol reduction[J]. ACS Applied Nano Materials, 2023, 6(1): 461-468.

[26]CHEN H, ZHUANG Q, WANG H, et al. Ultrafine gold nanoparticles dispersed in conjugated microporous polymers with sulfhydryl functional groups to improve the reducing activity of 4-nitrophenol[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649: 129459.

[27]ZHANG C X, WANG S L, ZHAN Z, et al. Synthesis of MWCNT-based hyper-cross-linked polymers with thickness-tunable organic porous layers[J]. ACS Macro Letters, 2019, 8(4): 403-408.

[28]WANG S L, XU M, PENG T Y, et al. Porous hyper-crosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion[J]. Nature Communications, 2019, 10(1): 676.

[29]王琰, 刘欢, 刘子欣, 等. 沥青基超交联聚合物的制备及其VOCs吸附性能[J]. 精细化工, 2023, 40(1): 87-92.

WANG Y, LIU H, LIU Z X, et al. Synthesis and VOCs adsorption performance of pitch-based hyper-cross-linked polymers[J]. Fine Chemicals, 2023, 40(1): 87-92.

[30]HE J, RAZZAQUE S, JIN S B, et al. Efficient synthesis of ultrafine gold nanoparticles with tunable sizes in a hyper-cross-linked polymer for nitrophenol reduction[J]. ACS Applied Nano Materials, 2019, 2(1): 546-553.

[31]ZHANG M, LU X, WANG H, et al. Porous gold nanoparticle/graphene oxide composite as efficient catalysts for reduction of 4-nitrophenol[J]. RSC Advances, 2016, 6(42): 35945-35951.

[32]WANG Z, LONG F, GAO H, et al. A robust wood-inspired catalytic system for highly efficient reduction of 4-nitrophenol[J]. Chemical Research in Chinese Universities, 2023, 39(1): 109-114.

[33]SYED S S, JACOB L, BHARATH G, et al. Rapid biosynthesis and characterization of metallic gold nanoparticles by olea europea and their potential application in photoelectrocatalytic reduction of 4-nitrophenol[J]. Environmental Research, 2023, 222: 115280.

[34]WANG Y, LI H, ZHANG J, et al. Fe3O4 and Au nanoparticles dispersed on the graphene support as a highly active catalyst toward the reduction of 4-nitrophenol[J]. Physical Chemistry Chemical and Physics, 2016, 18(1): 615-623.

[35]PACHFULE P, KANDAMBETH S, DIAZ D, et al. Highly stable covalent organic framework-Au nanoparticles hybrids for enhanced activity for nitrophenol reduction[J]. Chemical Communications, 2014, 50(24): 3169-3172.

[36]LI C, XU S, JIN M, et al. Trace thioether inserted polyamine patches on a support mediate uniform gold nanoclusters as ultrahigh active catalysts[J]. Journal of Materials Chemistry A, 2021, 9(28): 15714-15723.

[37]LI J, LIU C, LIU Y. Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol[J]. Journal of Materials Chemistry, 2012, 22(17): 8426-8430.

[38]SONG Z, LI W, NIU F, et al. A novel method to decorate Au clusters onto graphene via a mild co-reduction process for ultrahigh catalytic activity[J]. Journal of Materials Chemistry A, 2017, 5(1): 230-239.

[39]YE W, YU J, ZHOU Y, et al. Green synthesis of Pt-Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction[J]. Applied Catalysis B: Environmental, 2016, 181: 371-378.