ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第4期
<返回第4期

减阻装置对预热器旋风筒工作性能的优化

Optimization of working performance of preheater cyclone by drag reduction device

刘文欢, 刘 宇, 万永峰, 雷 繁, 徐品晶

(西安建筑科技大学 材料科学与工程学院, 陕西 西安 710055)


引用格式:刘文欢, 刘宇, 万永峰, 等. 减阻装置对预热器旋风筒工作性能的优化[J]. 中国粉体技术, 2023, 29(4): 71-79.

LIU W H, LIU Y, WAN Y F, et al. Optimization of working performance of preheater cyclone by drag reduction device[J]. China Powder Science and Technology, 2023, 29(4): 71-79.

DOI:10.13732/j.issn.1008-5548.2023.04.007

收稿日期:2022-10-15,修回日期:2022-11-11,在线出版时间:2023-05-18 16:07。

基金项目:国家重点研发计划项目,编号:2021YFB3802003、 2021YFB3802000。

第一作者简介:刘文欢(1981—),男,副教授,博士,硕士生导师,研究方向为硅酸盐工程理论及设备。E-mail: liuwenzian@sina.com。

通信作者简介:徐品晶(1981—),女,讲师,博士,研究方向为无机非金属材料。E-mail: xupinjing6100@xauat.edu.cn。


摘要:预热器旋风筒的高分离效率伴随着较大的压力损失,随着国家节能减排、超净排放政策的实施,如何保证较大幅度减小预热器旋风筒压力损失的同时不降低或者小幅降低其分离效率,达到节能降耗的目的,是目前行业研究的重点。为了实现预热器旋风筒的低压力损失及高分离效率,设计开发2种降低压力损失的装置;在不改变预热器旋风筒结构参数的前提下,研究不同类型降阻装置在不同入口风速、不同固气比下对压力损失和分离效率的影响,确定减阻器适用的工况。结果表明:对于相同结构参数的预热器旋风筒,内筒减阻器对压力损失的最大减阻率为21.34%,平均降低率为13.91%,对分离效率降低率为5%左右,适用于较低的入口风速或者高风速下较低固气比时的工况;引流减阻器在实验范围内具有良好的减阻效果,对压力损失的最大减阻率为54.40%,平均降低率达到35.23%,对分离效率降低率为7%,适用于对分离效率要求不太高,需要压力损失降低幅度较大的工况。

关键词:预热器旋风筒; 减阻器; 压力损失; 减阻率; 分离效率

Abstract:The high separation efficiency of preheater cyclone is accompanied by large large pressure loss. With the implomentation of the national policy of energy saving, emission reduction and ultra-clean emission, how to ensure that the pressure loss of preheater cyclone is greatly reduced without reducing or slightl reducing its separation efficiency, so as to achieve the purpose of energy saving and consumption reduction, is the focus of current industry research. In order to achieve the performance index of low resistance loss and high separation efficiency of preheater cyclone, two pressure loss reduction devices were designed and developed. Without changing the structural parameters of the preheater cyclone, this paper studied the effects of different types of drag reduction devices on pressure loss and separation efficiency under different inlet air velocities and different solid-gas ratios, determined the applicable working conditions of drag reduction devices. The results show that for the preheater cyclone with the same structural parameters, the maximum reduction rate of pressure loss by inner cylinder reduction device is 21.34%, the average reduction rate is 13.91%, and the reduction rate of separation efficiency is about 5%, which is applicable to the working conditions at lower inlet air speed or lower solid to gas ratio at high air speed. The diversion reduction device has good reduction effect within the test range, the maximum reduction rate of pressure loss reaches 21.34%, the average reduction rate of pressure loss reaches 35.23%, but the reduction rate of separation efficiency is 7%, which is suitable for the working conditions where the requirement of separation efficiency is not too high, but the pressure loss needs to be reduced significantly.

Keywords:cyclone separator; drag reduction device; pressure loss; drag reduction rate; separation efficiency


参考文献(References):

[1]毛娅, 陈家乐, 陈作炳, 等. 采用拉格朗日法与欧拉法模拟旋风筒内气固两相流的对比研究[J]. 硅酸盐通报, 2017, 36(2): 459-465.

MAO Y, CHEN J L, CHEN Z B, et al.Comparative study on cyclone gas-solid two-phase flow using lagrange method and euler method[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(2): 459-465.

[2]赵峰, 陈延信, 刘文欢, 等. 不同形式导流板对旋风器性能影响的试验研究[J]. 硅酸盐通报, 2007, 26(2): 242-246.

ZHAO F, CHEN Y X, LIU W H, et al. An experimental investigation on pressure drop and collection efficiency of cyclone separator with different inlet vanes[J].Bulletin of the Chinese Ceramic Society, 2007, 26(2): 242-246.

[3]陶从喜, 赵林, 俞为民, 等. 旋风筒阻力特性机理(英文)[J]. 硅酸盐学报, 2009, 37(12): 2124-2129.

TAO C X, ZHAO L, YU W M, et al. Mechanisim of resistance characteristics in cyclone[J]. Journal of the Chinese Ceramic Society, 2009, 37(12): 2124-2129.

[4]KARAGOZ I, AVCI A, SURMEN A, et al. Design and performance evaluation of a new cyclone separator[J]. Journal of Aerosol Science, 2013, 59: 57-64.

[5]刘成文, 李兆敏, 李希成. 壁面粗糙度对旋风分离器内流场影响的数值模拟[J]. 环境工程学报, 2011, 5(10): 2331-2336.

LIU C W, LI Z M, LI X C. Numerical simulation of the effect of wall roughness on flow field incyclones[J]. Chinese Journal of Environmental Engineering, 2011, 5(10): 2331-2336.

[6]LI Q, WANG Q G, XU W W, et al. Experimental and computational analysis of a cyclone separator with a novel vortex finder[J]. Powder Technology, 2020, 360: 398-410.

[7]宁楠, 赖喜德, 叶道星. 以减小压降为目标的导叶式分离器几何参数优化[J]. 热能动力工程, 2020, 35(6): 170-176.

NING N, LAI X D, YE D X. Optimizing geometric parameters of guide vane separator for reducing pressure drop[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(6): 170-176.

[8]ZHANG P, CHEN G, DUAN J, et al. Experimental evaluation of separation performance of fine particles of circulatory circumfluent cyclone separator system[J]. Separation and Purification Technology, 2019, 210: 231-235.

[9]YAO Y, HUANG W, WU Y, et al. Effects of the inlet duct length on the flow field and performance of a cyclone separator with a contracted inlet duct[J]. Powder Technology, 2021, 393(11): 12-22.

[10]付中斌. 旋风器阻力损失分析及其低阻型旋风器的研究[J]. 水泥, 1993(9): 1-6.

FU Z B. Analysis of resistance loss of cyclone and research on its low resistance cyclone[J]. Cement, 1993(9): 1-6.

[11]刘秀林, 姜淑凤, 陈淑鑫, 等. 基于PV型旋风分离器的结构优化实验[J]. 中国粉体技术, 2019, 25(5): 72-77.

LIU X L, JIANG S F, CHEN S X, et al. Experimental study on structural optimization of cyclone separator basedon PV type[J]. China Powder Science and Technology, 2019, 25(5): 72-77.

[12]陈思敏, 孙士荣, 刘振峰, 等. 轴流式旋风分离器结构与分离特性数值模拟[J]. 热能动力工程, 2021, 36(11): 100-106.

CHEN S M, SUN S R, LIU Z F, et al. Numerical simulation of structure and separation characteristics of axial flow cyclone separator[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(11): 100-106.

[13]BALTRNAS P, CRIVELLINI A, LEONAVIIEN T, et al. Investigation on particulate matter and gas motion processes in the advanced multi-channel cyclone-separator with secondary gas inlets[J]. Environmental Engineering Research, 2021(1).

[14]VENKATESH S, KUMAR R S, SIVAPIRAKASAM S P, et al. Multi-objective optimization, experimental and CFD approach for performance analysis in square cyclone separator[J]. Powder Technology, 2020, 371: 115-129.

[15]郗元, 霍浩, 代岩. 旋风除尘器最优化设计及CFD数值验证[J]. 机械设计与制造, 2018(8): 33-35, 40.

XI Y, HUO H, DAI Y. Optimization design of cyclone dust collector and CFD numerical verification[J]. Machinery Design &Manufacture, 2018(8): 33-35, 40.

[16]张礼华, 陈延信, 徐德龙. 高固气比范围旋风分离器内筒减阻装置的试验研究内旋风器压降计算模型的研究[J]. 矿山机械, 2006(10): 77-80.

ZHANG L H, CHEN Y X, XU D L. Study on calculation model of cyclone pressure drop in high solid-gas ratio range[J]. Mining &Processing Equipment, 2006(10): 77-80.

[17]解明, 孙立强, 宋健斐, 等. 旋风分离器内气相旋转流动态特性分析与表征[J]. 化工进展, 2022, 41(7): 3455-3464.

XIE M, SUN L Q, SONG J F, et al. Analysis and characterization of gas swirling flow dynamic characteristics ina cyclone separator[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3455-3464.

[18]CHLEBNIKOVAS A, KILIKEVICIUS A, SELECH J, et al. The numerical modeling of gas movement in a single inlet new generation multi-channel cyclone separator[J]. Energies, 2021, 14(23): 8092.

[19]袁怡, 孙国刚, 周发戚, 等. 筒体直径对旋风分离器性能的影响[J]. 石油学报(石油加工), 2017, 33(4): 738-745.

YUAN Y, SUN G G, ZHOU F Q, et al. Effects of the cylinder diameter on cyclone performance[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2017, 33(4): 738-745.