闫东杰1, 赵佳璇1, 李灶渊2, 玉 亚1
(1. 西安建筑科技大学 环境与市政工程学院, 陕西省环境工程重点实验室, 陕西 西安 710055;2. 长治市赢创环境科技有限公司, 山西 长治 046000)
引用格式:闫东杰, 赵佳璇, 李灶渊, 等. 石灰消化条件对高比表面积Ca(OH)2性能的影响[J]. 中国粉体技术, 2023, 29(4): 46-60.
YAN D J, ZHAO J X, LI Z Y, et al. Influence of lime digestion conditions on properties of Ca(OH)2 with high specific surface area[J]. China Powder Science and Technology, 2023, 29(4): 46-60.
DOI:10.13732/j.issn.1008-5548.2023.04.005
收稿日期:2022-10-03,修回日期:2022-11-13,在线出版时间:2023-06-06 17:40。
基金项目:陕西省重点研发计划项目,编号:2020SF-432。
第一作者简介:闫东杰(1981—),男,副教授,博士,硕士生导师,研究方向为颗粒污染物控制技术。 E-mail: andongjie_2000@163.com。
摘要:在烟气干法脱硫过程中,由于普通Ca(OH)2比表面积小,孔容和孔径小,导致脱硫效率低,因此制备高比表面积的Ca(OH)2粉体对烟气净化具有重要意义。消化条件是影响Ca(OH)2的结构和性能的重要因素。为了制备高比表面积的Ca(OH)2,对水与石灰的质量比(水灰比)、消化时间、去离子水的初始温度、生石灰初始粒径、搅拌速度等消化条件进行研究,利用比表面积分析仪、激光粒度仪、 X射线衍射仪和扫描电镜对石灰消化产物进行表征。结果表明:制备的Ca(OH)2具有高比表面积和疏松多孔及晶粒小的特点,不同的消化条件对Ca(OH)2的性能影响均不同;当水灰比为0.6、消化时间为15 min、去离子水的初始温度为90℃、生石灰初始粒径为>75~150μm、搅拌速度为120 r/min时,石灰消化产物Ca(OH)2的比表面积为26.990 m2/g,比孔容积为0.908 cm3/g。
关键词:氢氧化钙; 石灰消化; 比表面积; 粒度分布
Abstract:In the dry flue gas desulfurization process, the preparation of Ca(OH)2 powders with a high specific surface area has become increasingly valuable for flue gas purification due to the tiny specific surface area with small pore volume and pore size of ordinary Ca(OH)2, thus leading to low desulfurization officiency. Limo digestion conditions are vital elements affection the sturcture and performance of Ca(OH)2. In order to prepare Ca(OH)2 with a high specific surface area, digestion conditions such as mass ratio of water to lime, digestion time, initial temperature of deionized water, initial particle size of quicklime, and stirring speed were investigated. The quicklime digestion products were characterized using a specific surface area analyzer, laser particle size meter, X-ray diffractometer, and scanning electron microscope. The results show that Ca(OH)2 prepared in this experiment has the characteristics of high specific surface area, loose porosity, and small grain size. Moreover, different digestion conditions have different effects on properties of Ca(OH)2. The specific surface area of quicklime digestion product Ca(OH)2 is 26.990 m2/g and the specific pore volume is 0.908 cm3/g when the mass ratio of water to lime is 0.6, digestion time is 15 minutes, initial temperature of deionized water is 90 ℃, initial particle size of quicklime is greater than 75~150 μm and stirring speed is 120 r/min.
Keywords:calcium hydroxide; quicklime digestion; specific surface area; particle size distribution
参考文献(References):
[1]MARUYAMA A, KUROSAWA R, RYU J. Effect of lithium compound addition on the dehydration and hydration of calcium hydroxide as a chemical heat storage material[J]. ACS Omega, 2020, 5(17): 9820-9829.
[2]GAUTAM R K, SINGH A K, TIWARI I. Nanoscale layered double hydroxide modified hybrid nanomaterials for wastewater treatment: a review[J]. Journal of Molecular Liquids, 2022, 350: 118505.
[3]DAL POZZO A, MORICONE R, ANTONIONI G, et al. Hydrogen chloride removal from flue gas by low-temperature reaction with calcium hydroxide[J]. Energy &Fuels, 2018, 32(1): 747-756.
[4]周昭志, 池涌, 汤元君, 等. 钙基添加剂对生活垃圾热解过程含氯污染物排放的影响[J]. 现代化工, 2020, 40(9): 121-125.
ZHOU Z Z, CHI Y, TANG Y J, et al .Effect of calcium-based additives on emission of chlorine-containing contaminants during MSW pyrolysis[J]. Modern Chemical Industry, 2020, 40(9): 121-125.
[5]EL BAKKARI M, BINDIGANAVILE V, BOLUK Y. Facile synthesis of calcium hydroxide nanoparticles onto TEMPO-oxidized cellulose nanofibers for heritage conservation[J]. ACS Omega, 2019, 4(24): 20606-20611.
[6]MOHAMMADI Z, DUMMER P M H. Properties and applications of calcium hydroxide in endodontics and dental traumatology[J]. International Endodontic Journal, 2011, 44(8): 697-730.
[7]侯瑞琴, 杜玉成, 刘铮, 等. 纳米氢氧化钙颗粒制备、 表征及NOx捕获性能研究[J]. 非金属矿, 2010, 33(5): 5-7, 12.
HOU R Q, DU Y C, LIU Z, et al. Study on preparation and characterization of nano-Ca(OH)2 and its adsorption performance to NOX[J]. Non-Metallic Mines, 2010, 33(5): 5-7, 12.
[8]RENEDO M J, FERNNDEZ-FERRERAS J. Characterization and behavior of modified calcium-hydroxide-based sorbents in a dry desulfurization process[J]. Energy &Fuels, 2016, 30(8): 6350-6354.
[9]YAN J, YUAN W, LIU J, et al. An integrated process of chemical precipitation and sulfate reduction for treatment of flue gas desulphurization wastewater from coal-fired power plant[J]. Journal of Cleaner Production, 2019, 228: 63-72.
[10]FERNNDEZ I, GAREA A, IRABIEN A. SO2 reaction with Ca(OH)2 at medium temperatures (300~425 ℃): kinetic behaviour[J]. Chemical Engineering Science, 1998, 53(10): 1869-1881.
[11]GAREA A, HERRERA J L, MARQUES J A, et al. Kinetics of dry flue gas desulfurization at low temperatures using Ca(OH)2: competitive reactions of sulfation and carbonation[J]. Chemical Engineering Science, 2001, 56(4): 1387-1393.
[12]CHEN L, STEHOUWER R, TONG X, et al. Surface coal mine land reclamation using a dry flue gas desulfurization product: short-term and long-term water responses[J]. Chemosphere, 2015, 134: 459-465.
[13]SALEHI E, EIDI B, SOLEIMANI Z. An integrated process consisting of Mg(OH)2-impregnated ceramic foam filters as adsorbent and Mg(OH)2 as scrubbing solution for intensified desulfurization of flue gas[J]. Separation and Purification Technology, 2019, 216: 34-42.
[14]卢丽君, 方宏辉, 吴英. 生石灰干式消化工艺优化实验研究[J]. 武钢技术, 2014, 52(2): 33-36.
LU L J, FANG H H, WU Y. Experimental study of the dry lime digestion process optimization[J]. Wisco Technology, 2014, 52(2): 33-36.
[15]薛健, 高翔, 刘海蛟, 等. 石灰干式消化过程参数对消化产物特性影响的实验研究[J]. 能源工程, 2006(4): 44-48.
XUE J, GAO X, LIU H J, et al. An experimental study of the effect of hydration procedure parameters of lime dry hydration on hydration production’s properties[J]. Energy Engineering, 2006(4): 44-48.
[16]谷丽, 刘润静, 郭志伟. 石灰消化条件对氢氧化钙活性的影响[J]. 中国粉体技术, 2012, 18(4): 62-65, 69.
GU L, LIU R J, GUO Z W. Effect of lime slaking conditions on activity of calcium hydroxide[J]. China Powder Science and Technology, 2012, 18(4): 62-65, 69.
[17]魏仁零, 吴晓琴, 陈云, 等. 石灰干式消化工艺参数优化选择[J]. 武汉科技大学学报, 2011, 34(6): 473-477.
WEI R L,WU X Q, CHEN Y, et al. Selection and optimzation of technological parameters for dry slaking of quicklime[J]. Journal of Wuhan University of Science and Technology, 2011, 34(6): 473-477.
[18]马跃强, 易红宏, 唐晓龙, 等. 生石灰消化特性及其对SDA法烟气脱硫性能的研究[J]. 现代化工, 2018, 38(3): 169-172.
MA Y Q, YI H H, TANG X L, et al. Hydration characteristics of quicklime and its performance in flue gas desulfurization by SDA method[J]. Modern Chemical Industry, 2018, 38(3): 169-172.
[19]中国建筑材料联合会. 建材用石灰石、 生石灰和熟石灰化学分析方法: GB/T 5762—2012[S]. 北京: 中国标准出版社, 2013.
China Building Materials Federation. Methods for chemical analysis of limestone, quicklime and hydrated lime for building materials industry: GB/T 5762—2012[S].Beijing: China Standards Press, 2013
[20]国家能源局. 干法烟气脱硫用生石灰的活性测定方法: DL/T323—2010[S]. 北京: 中国电力出版社, 2011.
National Energy Administration. Measurement method for activity of quicklime used in dry flue gas desulfurization: DL/T323—2010[S]. Beijing: China Electric Power Press, 2011.
[21]钟伟飞. 石灰消化工艺参数及氢氧化钙溶解速率实验研究[D]. 杭州: 浙江大学, 2004.
ZHONG W F. Experimental study of operating parameters of lime slaking process and dissolution rate of calcium hydroxide[D]. Hangzhou: Zhengjiang University, 2004.
[22]SALVADORI B, DEI L. Synthesis of Ca(OH)2 nanoparticles from diols[J]. Langmuir, 2001, 17(8): 2371-2374.
[23]LHMUS H, RNI A, KALLAVUS U, et al. A trend to the production of calcium hydroxide and precipitated calcium carbonate with defined properties[J]. The Canadian Journal of Chemical Engineering, 2002, 80(5): 911-919.
[24]滕斌, 高翔, 刘海蛟, 等. 消化过程参数对脱硫剂颗粒特性影响的试验研究[J]. 燃烧科学与技术, 2003(6): 529-534.
TENG B, GAO X, LIU H J, et al. Experimental study of the effect of hydration procedure parameters on desulfurizer’s structural properties[J]. Journal of Combustion Science and Technology, 2003(6): 529-534.
[25]SHI H, ZHAO Y, LI W. Effects of temperature on the hydration characteristics of free lime[J]. Cement and Concrete Research, 2002, 32(5): 789-793.
[26]XU M, HUAI X, CAI J. Agglomeration behavior of calcium hydroxide/calcium oxide as thermochemical heat storage material: a reactive molecular dynamics study[J]. The Journal of Physical Chemistry C, 2017, 121(5): 3025-3033.
[27]梁宝瑞, 宋存义, 赵荣志, 等. 基于密相半干法脱硫工艺的生石灰消化及改性[J]. 环境工程学报, 2013, 7(2): 673-678.
LIANG B R, SONG C Y, ZHAO R Z, et al. Digestion and modification of lime based on dense semi-dry desulfurization process[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 673-678.
[28]钟伟飞, 吴忠标. 石灰消化工艺的研究与优化[J]. 环境污染与防治, 2004(6): 424-436.
ZHONG W F, WU Z B. Study and optimization of lime slaking technology[J]. Environmental Pollution &Control, 2004(6): 424-436.
[29]郝志飞, 张印民, 张永锋, 等. 湿法改性制备高比表面积氢氧化钙及表征[J]. 无机盐工业, 2015, 47(12): 19-21.
HAO Z F, ZHANG Y M, ZHANG Y F, et al. Wet modified preparation and characterization of calcium hydroxide with high specific surface area[J]. Inorganic Chemicals Industry, 2015, 47(12): 19-21.
[30]冀文亮. 高钙粉煤灰/Ca(OH)2水合对脱硫剂性能影响的研究[D]. 昆明: 昆明理工大学, 2013.
JI W L. Study on the effect of high calcium fly ash/Ca(OH)2 hydration on the performance of desulfurization agent[D]. Kunming:Kunming University of Science and Technology, 2013.