ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第4期
<返回第4期

碱激发再生砖粉地聚物的抗压强度与微观特性

Compressive strength and microscopic characteristics of alkali-activated recycled brick powder geopolymer

周文娟1, 赵依琳1a, 季志远2, 钮浩翔1a, 周理安1

(1. 北京建筑大学 a. 土木与交通工程学院, b. 北京节能减排与城乡可持续发展省部共建协同创新中心, 北京 100044;2. 中建地产广州有限公司, 广东 广州 510665)


引用格式:周文娟, 赵依琳, 季志远, 等. 碱激发再生砖粉地聚物的抗压强度与微观特性[J]. 中国粉体技术, 2023, 29(4): 36-45.

ZHOU W J, ZHAO Y L, JI Z Y, et al. Compressive strength and microscopic characteristics of alkali-activated recycled brick powder geopolymer[J]. China Powder Science and Technology, 2023, 29(4): 36-45.

DOI:10.13732/j.issn.1008-5548.2023.04.004

收稿日期:2022-10-18,修回日期:2022-11-14,在线出版时间:2023-05-22 09:51。

基金项目:国家重点研发计划项目,编号:2017YFC0703305。

第一作者简介:周文娟(1977—),女,副教授,硕士研究生导师。研究方向为固体废弃物的资源化利用。E-mail: zhouwenjuan@bucea.edu.cn。


摘要:废弃黏土砖在建筑垃圾中占有较高比例,经过破碎、研磨后得到的再生砖粉存在火山灰活性,可作为地聚物的原料进行使用。采用正交实验方法研究矿物掺合料、激发剂、水与胶凝材料的质量比(水胶比)等因素对再生砖粉地聚物抗压强度的影响,并通过X射线衍射、扫描电镜能谱、红外光谱等微观手段系统地进行表征。结果表明:矿粉取代率、水玻璃掺量对再生砖粉地聚物抗压强度影响显著;矿粉取代率的提高,促使水化硅铝酸钠凝胶向水化硅铝酸钙凝胶转变,提高再生砖粉地聚物的抗压强度;高钙体系再生砖粉地聚物中含钠的水化硅铝酸钙、水化硅酸钙等多种凝胶与Ca(OH)2晶体共存;偏高岭土的掺入促进含钠的水化硅铝酸钙凝胶的生成,提高聚合反应程度,延缓裂缝的生长,内部微结构得到较大改善,利于强度的发展。

关键词:再生砖粉; 地聚物; 抗压强度; 微观特性

Abstract:Waste clay bricks account for a high proportion of construction waste, and the recycled brick powder obtained after crushing and grinding has pozzolanic activity, which can be used as the raw material of geopolymers. The effects of mineral admixture, activator and mass ratio of water to cementitious material(water-binder ratio) on the compressive strength of recycled brick powder geopolymer were studied by orthogonal experimental method, and systematically characterized by microscopic means such as XRD, SEM-EDS and FTIR. The results show that the substitution rate of slag powder and the content of sodium silicate have obvious effects on the compressive strength of recycled brick powder geopolymer. With the increase of substitution rate of slag powder, sodium aluminosilicate hydrate gel changes to calcium aluminosilicate hydrate gel, the compressive strength of recycled brick powder geopolymer is improved. Sodium-containing calcium aluminosilicate hydrate, calcium silicate hydrate and other gels coexist with Ca(OH)2 crystals in the recycled brick powder geopolymer of high calcium system. Metakaolin promotes the formation of sodium-containing calcium aluminosilicate hydrate gel, increases the degree of polymerization, delays the growth of cracks, and improves the internal microstructure, the compressive strength is increased.

Keywords:recycled brick powder; geopolymer; compressive strength; microscopic characterization


参考文献(References):

[1]王罗春, 蒋路漫, 赵由才. 建筑垃圾处理与资源化[M]. 北京: 化学工业出版社, 2018: 5-6.

WANG L C, JIANG L M, ZHAO Y C. Construction waste treatment and resource utilization[M]. Beijing: Chemical Industry Press, 2018: 5-6.

[2]MANSUR M A, WEE T H, LEE S C. Crushed bricks as coarse aggregate for concrete[J]. Materials Journal, 1999, 96(4): 478-484.

[3]DEBIEB F, KENAI S. The use of coarse and fine crushed bricks as aggregate in concrete[J]. Construction and Building Materials, 2008, 22(5): 886-893.

[4]郑文忠, 邹梦娜, 王英. 碱激发胶凝材料研究进展[J]. 建筑结构学报, 2019, 40(1): 28-39.

ZHENG W Z, ZOU M N, WANG Y. Literature review of alkali-activated cementitious materials[J]. Journal of Building Structures, 2019, 40(1): 28-39.

[5]程麟, 朱成桂, 盛广宏. 碱磷渣水泥的力学性能及微观结构[J]. 硅酸盐学报, 2006, 34(5): 604-609.

CHENG L, ZHU C G, SHENG G H. Mechanical properties and microstructure of alkali-activated phosphorous slag cement[J]. Journal of the Chinese Ceramic Society, 2006, 34(5): 604-609.

[6]吴旻, 谢胜华, 葛根旺. 碱激发钢渣矿渣复合基层材料的强度特性及微观机制[J]. 硅酸盐通报, 2021, 40(8): 2640-2646.

WU M, XIE S H, GE G W. Strength characteristics and micro-mechanism of alkali-activated steel slag-blast furnace slag road base composite material[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8): 2640-2646.

[7]乔宏霞, 洪芬, 陈克凡, 等. 碱激发高掺量玄武岩石粉砂浆的强度及微观性能研究[J]. 硅酸盐通报, 2019, 38(5): 1532-1537.

QIAO H X, HONG F, CHEN K F, et al. Study on strength and microscopic properties of alkali activated high dosage basalt powder mortar[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(5): 1532-1537.

[8]XU H, VAN DEVENTER J S J. The geopolymerisation of aluminosilicate minerals[J]. International Journal of Mineral Processing, 2000, 59(3): 247-266.

[9]张云生, 孙伟, 李宗津. 地聚合物胶凝材料的组成设计和结构特征[J]. 硅酸盐学报, 2008, 36(增刊1): 153-159.

ZHANG Y S, SUN W, LI Z J. Composition design and microstructural characterization of geopolymer binder[J]. Journal of the Chinese Ceramic Society, 2008, 36(suppl.1): 153-159.

[10]易鸣. 地质聚合物砂浆的制备与性能研究[D]. 杭州: 浙江理工大学, 2021.

YI M. Study on the preparation and properties of geopolymer mortar[D]. Hangzhou: Zhejiang Sci-tech University, 2021.

[11]简家成, 刘峥, 赖丽燕, 等. 偏高岭土地聚物制备条件及其水化过程[J]. 桂林理工大学学报, 2014, 34(3): 544-548.

JIAN J C, LIU Z, LAI L Y, et al. Preparation conditions and hydration process of metakaolin geopolymer[J]. Journal of Guilin University of Technology, 2014, 34(3): 544-548.

[12]YIP C K, LUKEY G C, VAN DEVENTER J S J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation[J]. Cement and Concrete Research, 2005, 35(9): 1688-1697.

[13]YIP C K, LUKEY G C, PROVIS J L, et al. Effect of calcium silicate sources on geopolymerisation[J]. Cement and Concrete Research, 2008, 38(4): 554-564.

[14]王晴, 康升荣, 吴丽梅, 等. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.

WANG Q, KANG S R, WU L M, et al. Structural modeling and molecular dynamics simulation of geopolymers gel[J]. Materials Reports, 2020, 34(4): 4056-4061.

[15]罗新春. 矿渣/偏高岭土基地聚合物材料的制备及其性能研究[D]. 景德镇: 景德镇陶瓷大学, 2016.

LUO X C. Preparation and properties of slag/metakaolin based geopolymer materials[D]. Jingdezhen: Jingdezhen Ceramic University, 2016.

[16]BERNAL S A, PROVIS J L, ROSE V, et al. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends[J]. Cement and Concrete Composites, 2011, 33(1): 46-54.

[17]覃丽芳, 曲波, 史才军, 等. 钙硅比对铝硅酸盐凝胶形成与特性的影响[J]. 材料导报, 2020, 34(12): 12057-12063.

QIN L F, QU B, SHI C J, et al. Effect of Ca-Si ratio on the formation and characteristics of synthetic aluminosilicate hydrate gels[J]. Materials Reports, 2020, 34(12): 12057-12063.

[18]BERNAL S A. Microstructural changes induced by CO2 exposure in alkali-activated slag/metakaolin pastes[J]. Frontiers in Materials, 2016, 3: 1-10.