ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第4期
<返回第4期

水泥和粉煤灰稳定钢渣-砼再生碎石路基混合料的制备及其性能

Preparation and properties of subgrade mixture made of steel slag-concrete regeneration gravel stabilized with cement and fly ash

程银银a, 李宏波, 康鑫睿a, 丁永发a, 童彧斐a

(宁夏大学 a. 土木与水利工程学院, b. 宁夏节水灌溉与水资源调控工程技术研究中心,c. 宁夏土木工程防震减灾工程技术研究中心, 宁夏 银川 750021)


引用格式:程银银, 李宏波, 康鑫睿, 等. 水泥和粉煤灰稳定钢渣-砼再生碎石路基混合料的制备及其性能[J]. 中国粉体技术, 2023, 29(4): 11-21.

CHENG Y Y, LI H B, KANG X R, et al. Preparation and properties of subgrade mixture made of steel slag-concrete regeneration gravel stabilized with cement and fly ash[J]. China Powder Science and Technology, 2023, 29(4): 11-21.

DOI:10.13732/j.issn.1008-5548.2023.04.002

收稿日期:2022-12-15,修回日期:2023-05-04,在线出版时间:2023-05-26 11:24。

基金项目:宁夏重点研发计划项目,编号:2021BDE92002;宁夏高等学校一流学科(水利工程学科)资助项目,编号:NXYLXK2021A03。

第一作者简介:程银银(1999—),女,硕士研究生,研究方向为土木工程新材料。E-mail: cyynxu@163.com。

通信作者简介:李宏波(1977—),男,副教授,博士,硕士生导师,研究方向为土木工程新材料。E-mail: lhbiongo@126.com。


摘要:为减少对天然碎石的开采量,解决工业废渣和建筑固体废弃物大量堆积的问题,采用水泥和粉煤灰稳定钢渣-砼再生碎石制备路基混合料。在水泥和粉煤灰的掺量范围确定的情况下,通过干湿循环试验确定钢渣和砼再生碎石的较优质量比;当钢渣和砼再生碎石选取较优质量比时,通过三轴试验测试混合料的力学性能,进一步优化水泥和粉煤灰的质量分数;利用X射线衍射、扫描电子显微镜、能量色散X射线谱分析不同龄期制得的混合料的组成、微观结构及水化反应特征产物的变化规律,研究混合料的形成机制和强度影响因素。结果表明:当钢渣和砼再生碎石的质量比为3∶1时,制得的混合料的相对强度最高,失质量分数最小;当水泥掺入质量分数为5%、粉煤灰掺入质量分数为16%、钢渣和砼再生碎石的质量比为3∶1时,制得的混合料黏聚力最强,抗剪强度最大,力学性能较优;在水化早期掺入钢渣可增加钙矾石的生成量,提高制得的混合料的强度;制得的混合料的水化产物以水化硅酸钙、氢氧化钙和钙矾石为主;钙离子浓度的增加能增强制得的混合料的水化产物碱性,缩短硅酸钙水化物中的硅氧四面体链,降低制得的混合料的聚合度。

关键词:粉煤灰; 钢渣-砼再生碎石; 路基混合料; 干湿循环试验; 三轴试验

Abstract:In order to reduce the amount of natural gravel mining and solve the problem of large amount of industrial waste and construction solid waste accumulation, cement and fly ash were used to stabilize steel slag and concrete regeneration gravel, and subgrade mixture was prepared. The better quality ratio of steel slag and concrete regeneration gravel was determined by dry and wet cycle test when the content range of cement and fly ash was determined. On the basis of selecting the better quality ratio of steel slag and concrete regeneration gravel, the mechanical properties of the mixture were tested by triaxial test to further optimize the content of cement and fly ash. X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectrum were used to analyze the composition, microstructure and changes of the characteristic products ofhydration reaction of mixtures of different ages, and the formation mechanism and strength influencing factors of mixtures were studied. The results prove that the relative strength of the mixture is the highest and the mass loss fraction is the lowest when the mass ratio of steel slag and concrete regeneration gravel is 3∶1. When the cement mass fraction is 5%, the fly ash mass fraction is 16%, and the mass ratio of steel slag and concrete regeneration gravel is 3∶1, the mixture has the strongest cohesion, the largest shear strength and better mechanical properties. The addition of steel slag in the early stage of mixture hydration can increase the amount of ettringite generation and improve the strength of the mixture. The hydration products of the mixture are mainly calcium silicate hydrate, calcium hydroxide and ettringite. The increasing of calcium ion concentration increases the alkalinity of the system, shortens the siliconoxygen tetrahedral chain in calcium silicate hydrateand reduces the polymerization degree of the mixture.

Keywords:fly ash; steel slag-concrete regeneration gravel; subgrade mixture; dry and wet cycle test; triaxialtest


参考文献(References):

[1]张梦萌, 陈昕, 付晓雷. 粉煤灰在功能材料中的应用研究进展[J]. 兵器材料科学与工程, 2019, 42(6): 124-128.

ZHANG M M, CHEN X, FU X L. A review on the utilization progress of fly ash in the functional materials[J]. Ordnance Material Science and Engineering, 2019, 42(6): 124-128.

[2]安卓卿, 王艺慈, 张帅, 等. 冶金工业固废制备微晶玻璃研究进展[J]. 中国陶瓷, 2022, 58(7): 9-20.

AN Z Q, WANG Y C, ZHANG S, et al. Review of research progress on preparing glass-ceramics from metallurgical solid wastes[J]. China Ceramics, 2022, 58(7): 9-20.

[3]陈新杰, 甄飞. 再生骨料混凝土在道路基层中的应用研究[J]. 中外公路, 2020, 40(1): 249-252.

CHEN X J, ZHEN F. Application of recycled aggregate concrete in base course of road[J]. Journal of China and Foreign Highway, 2020, 40(1): 249-252.

[4]黄谦, 胡铌, 赵隆峰, 等. 复掺石灰石粉与粉煤灰对水泥砂浆性能的影响[J]. 非金属矿, 2021, 44(6): 45-48.

HUANG Q, HU N, ZHAO L F, et al. Effect of compounding limestone powder and fly ash on properties of cement mortars[J]. Non-Metallic Mines, 2021, 44(6): 45-48.

[5]汪学彬, 杨重卿, 张祥伟, 等. 工业固体废弃物制备陶粒及其应用研究进展[J]. 中国粉体技术, 2021, 27(2): 1-8.

WANG X B, YANG Z Q, ZHANG X W, et al. Preparation and application of ceramsite prepared from industrial solid waste: a review[J]. China Powder Science and Technology, 2021, 27(2): 1-8.

[6]刘克非, 邓林飞, 蒋康. 二灰水泥稳定碎石基层的力学与干缩性能[J]. 中国粉体技术, 2016, 22(5): 38-41.

LIU K F, DENG L F, JIANG K. Mechanical and dry shrinkage properties of roadbase with fly ash cement-stabilized crushed stone[J]. China Powder Science and Technology, 2016, 22(5): 38-41.

[7]周纯秀, 崔洪海, 张中丽, 等. 改良碳酸盐渍土路基填料的力学性质[J]. 哈尔滨工业大学学报, 2022, 54(9): 93-100.

ZHOU C X, CUI H H, ZHANG Z L, et al. Mechanical properties of improved carbonate soil road bed filler[J]. Journal of Harbin Institute of Technology, 2022, 54(9): 93-100.

[8]MUJTABA H, AZIZ T, FAROOQ K, et al. Improvement in engineering properties of expansive soils using ground granulated blast furnace slag[J]. Journal of the Geological Society of India, 2018, 92(3): 357-362.

[9]吴少鹏, 崔培德, 谢君, 等. 钢渣集料膨胀抑制方法及混合料体积稳定性研究现状[J]. 中国公路学报, 2021, 34(10): 166-179.

WU S P, CUI P D, XIE J, et al. Expansive inhibition method of steel slag aggregate and volume stability of mixture: a review[J]. China Journal of Highway and Transport, 2021, 34(10): 166-179.

[10]肖杰, 龙晨杰, 何建刚, 等. 大掺入质量分数激活钢渣微粉-水泥稳定碎石性能及微观特性[J]. 中国公路学报, 2021, 34(10): 204-215.

XIAO J, LONG C J, HE J G, et al. Performance and micro characteristics of cement stabilized macadam with a large amount of activated steel slag powder[J]. China Journal of Highway and Transport, 2021, 34(10): 204-215.

[11]冀欣, 盛燕萍, 路再红, 等. 掺加钢渣的半刚性基层材料性能[J]. 长安大学学报(自然科学版), 2021, 41(4): 21-31.

GONG X, SHENG Y P, LU Z H, et al. Properties of semi-rigid base material with steel slag[J]. Journal of Chang’an University (Natural Science Edition) , 2021, 41(4): 21-31.

[12]YING Y Q, LU S G, SHI H X, et al. Flue gas desulfurization (FGD) steel slag ameliorates salinity, sodicity, and adverse physical properties of saline-sodic soil of middle Yellow River, China[J]. Environment Science Pollution Research, 2021, 28(27): 36765-36774.

[13]李曙龙. 水泥稳定砖砼再生集料路用性能试验研究[J]. 公路与汽运, 2021, 202(1): 91-94.

LI S L. Experimental study on road performance of cement-stabilized brick recycled aggregate[J]. Highways and Automotive Applications, 2021, 202(1): 91-94.

[14]刘元德, 安旭文, 黄天翔. 再生集料沥青混凝土物理力学性能的试验研究[J]. 武汉大学学报(工学版), 2022, 55(10): 1027-1033.

LIU Y D, AN X W, HUANG T X. Experimental study on the physical and mechanical properties of recycled aggregate asphalt concrete[J]. Engineering Journal of Wuhan University, 2022, 55(10): 1027-1033.

[15]甄珍. 基于抗裂性能的水泥炉渣稳定碎石基层试验研究[D]. 南京: 南京林业大学, 2020.

ZHEN Z. Experimental study on cement stabilized MSWI-BA macadam base based on crack resistance[D]. Nanjing: Nanjing Forestry University, 2020.

[16]MOHAMMADINIA A, ARULRAJAH A, HORPIBULSUK S, et al. Effect of fly ash on properties of crushed brick and reclaimed asphalt in pavement base/subbase applications[J]. Journal of Hazardous Materials, 2017, 321: 547-556.

[17]交通运输部公路科学研究院.JTG/T F20—2015公路路面基层施工技术细则[S]. 北京: 人民交通出版社, 2015.

Highway Science Research Institute of the Ministry of Transport. Technical specifications for the construction of highway pavement base layer JTG/T F20—2015[S]. Beijing: China Communications Press, 2015.

[18]《土工合成材料工程应用手册》编写委员会. 土工合成材料工程应用手册[M]. 北京: 中国建筑工业出版社, 2000: 119-127.

Editing Committee of the Application Manual of Geosynthetics. The application manual of geosynthetics[M]. Beijing: China Architecture and Building Press, 2000: 118-127.

[19]陈宗平, 陈宇良, 应武挡. 再生混凝土三向受压试验及强度准则[J]. 建筑材料学报, 2016, 19(1): 149-155.

CHEN Z P, CHEN Y L, YING W D. Mechanical behavior and strength criterion of recycled aggregate concrete(RAC)under triaxial compression[J]. Journal of Building Materials, 2016, 19(1): 149-155.

[20]许丁斌. 钢渣沥青混合料的材料及性能研究[D]. 南京: 东南大学, 2018.

XU D B. The material and performance research of steel slag asphalt mixtures[D]. Nanjing: Southeast University, 2018.

[21]周阳. 水泥基材料碳硫硅钙石的形成演变与调控机制研究[D]. 武汉: 武汉理工大学, 2018.

ZHOU Y. Mechanism of thaumsite in cement-based materials[D]. Wuhan: Wuhan University of Technology, 2018.