ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第4期
<返回第4期

高温气冷堆蒸汽发生器中粉尘颗粒的重悬浮特性

Resuspension characteristic of dust particles in steam generator of high temperature gas-cooled reactor

石 倩1, 张天琦2, 于溯源2

(1. 国家知识产权局专利局, 北京 100088;2. 清华大学 能源与动力工程系, 北京 100084)


引用格式:石倩, 张天琦, 于溯源. 高温气冷堆蒸汽发生器中粉尘颗粒的重悬浮特性[J]. 中国粉体技术, 2023, 29(4): 1-10.

SHI Q, ZHANG T Q, YU S Y. Resuspension behavior of dust particles in steam generator of high temperature gas-cooled reactor[J]. China Powder Science and Technology, 2023, 29(4): 1-10.

DOI:10.13732/j.issn.1008-5548.2023.04.001

收稿日期:2022-12-21,修回日期:2023-03-01,在线出版时间:2023-05-10 09:17。

基金项目:国家重点研发计划项目,编号:2020YFB1901401。

第一作者简介:石倩(1975—),女,审查员,硕士,研究方向为机械设计与制造。E-mail: shiqian@tsinghua.edu.cn。

通信作者简介:于溯源(1965—),男,教授,博士,博士生导师,研究方向为核反应工程、颗粒动力学。E-mail:suyuan@tsinghua.edu.cn。


摘要:高温气冷堆的蒸汽发生器是一回路中关键的能量转换单元,也是放射性石墨粉尘沉积的主要场所。为了研究石墨粉尘的重悬浮特性,采用数值模拟方法计算高温气冷堆蒸汽发生器中的流场及换热温度场分布,基于颗粒多层递推模型和Rock'n'roll重悬浮模型建立多层微细颗粒重悬浮模型,结合数值模拟和多层微细颗粒重悬浮模型探讨气流摩擦速度、沉积层数、颗粒大小以及蒸汽发生器不同区域对石墨粉尘重悬浮特性的影响。结果表明:在蒸汽发生器各管段,流体的气流摩擦速度在换热管的迎风点和背风点附近处最小,在靠近内套管侧的点附近和靠近外套管侧的点附近最大;在气流的带动下,发生重悬浮的颗粒比例随颗粒沉积层数的增加而递减;粒径较小的颗粒更不容易发生重悬浮,需要达到一定的速度后才会发生“扬起”,在相同的气流摩擦速度条件下,粒径较大的颗粒起重悬浮率更大;反应堆运行功率越大,发生重悬浮的颗粒越多;相同功率水平下,从过冷段、泡核沸腾段、膜态沸腾段直至过热段发生重悬浮的颗粒比例依次逐渐增多。

关键词:石墨粉尘颗粒; 高温气冷堆; 蒸汽发生器; 重悬浮特性

Abstract:The steam generator of high temperature gas-cooled reactor is the key energy conversion unit in the primary circuit, and is also the main place for the deposition of radioactive graphite dust. In order to investigate the resuspension characteristics of graphite dust in the steam generator, numerical simulations were used to calculate the flow field and heat transfer temperature field distribution in the steam generator. Based on multi-layer particles recursive model and Rock'n'roll resuspension model, a multi-layer fine particle resuspension model was established. Combined with numerical simulation and multi-layer fine particle resuspension model, the effects of airflow friction velocity, number of sedimentary layers, particle size and different regions of the steam generator on the resuspension characteristics of graphite dust were discussed. The results show that in each section of the steam generator, the friction velocity of the fluid is the lowest near the windward and leeward points of the heat exchange tube, while it reaches the maximum at the points near the inner sleeve side and the outer sleeve side. Driven by fluid flow, the resuspension fraction decreases with the increase of the number of layers. Smaller particles are less likely to be resuspended and need to reach a certain velocity before they are 'lifted'. Larger particles have a greater resuspension rate at the same friction velocity. The higher the power level of the reactor, the greater the share of particles deposited on the steam generator wall that are resuspended. At a given power level, the share of particles that are resuspended in the subcooled, bubble-core boiling, film-boiling and superheated sections of the steam generator tends to increase gradually.

Keywords:graphite dust; high temperature gas-cooled reactor; steam generator; resuspension characteristic


参考文献(References):

[1]刘马林, 刘荣正, 李自强, 等.颗粒学在高温气冷堆核能工程中的应用[J]. 中国粉体技术, 2014, 4(20): 1-7.

LIU M L, LIU R Z, LI Z Q, et al. Application of particuology in high temperature gas cooled nuclear reactor engineering[J]. China Powder Science and Technology, 2014, 4(20): 1-7.

[2]SUN Q, PENG W, YU S Y, et al. A review of HTGR graphite dust transport research[J]. Nuclear Engineering and Design, 2020, 360(15): 114077.

[3]COGLIATI J J, OUGOUAG A M, ORTENSI J. Survey of dust production in pebble bed reactor cores[J]. Nuclear Engineering and Design, 2011, 241(6): 2364-2369.

[4]HIRUTA M, JOHNSON G, ROSTAMIAN M, et al. Computational and experimental prediction of dust production in pebble bed reactors: Part II[J]. Nuclear Engineering and Design, 2013, 263: 509-514.

[5]TROY R S, TOMPSON R V, GHOSH T K, et al. Particle production by rotational abrasion between graphite spheres[J]. Nuclear Technology, 2015, 191(1): 71-91.

[6]SUN Q, YE P, PENG W, et al. Wear of graphite pebbles modeled using a macroscopic particle model in a pneumatic transport lifting pipe[J]. Powder Technology, 2020, 361(1): 581-590.

[7]梁宇, 郭丽潇, 邓少刚, 等. HTR-PM高温气冷示范堆堆芯石墨粉尘产生量估算[J]. 辐射防护, 2018, 38(5): 409-414.

LIANG Y, GUO L X, DENG S G, et al. Estimation of graphite dust generation in the core of HTR-PM high temperature gas cooled demonstration reactor[J]. Radiation Protection, 2018, 38(5): 409-414.

[8]XIE F, CAO J, FENG X, et al. Experimental research on the radioactive dust in the primary loop of HTR-10[J]. Nuclear Engineering and Design, 2017, 324: 372-378.

[9]TAO C, ZHAO G, YU S Y, et al. Experimental study of thermophoretic deposition of HTGR graphite particles in a straight pipe[J]. Progress in Nuclear Energy, 2018, 107: 136-147.

[10]WEI M Z, ZHANG Y Y, WU X X, et al. A parametric study of graphite dust deposition on high-temperature gas-cooled reactor (HTGR) steam generator tube bundles[J]. Annals of Nuclear Energy, 2019, 123: 135-144.

[11]SUN Q, CHEN T, PENG W, et al. A numerical study of particle deposition in HTGR steam generators[J]. Nuclear Engineering and Design, 2018, 332: 70-78.

[12]彭威, 杨小勇, 王捷, 等. 高温气冷堆蒸气发生器结构内石墨粉尘的运动行为的初探[J]. 中国粉体技术, 2011, 17(6): 24-26, 31.

PENG W, YANG X Y, WANG J, et al. Graphite dust motion in steam generator of high temperature gas-cooled reactor[J]. China Powder Science and Technology, 2011, 17(6): 24-26, 31.

[13]周涛, 杨瑞昌, 张记刚, 等. 矩形管边界层内亚微米颗粒运动热泳规律的实验研究[J]. 中国电机工程学报, 2010, 30(2): 92-97.

ZHOU T, YANG R C, ZHANG J G, et al. Experimental study on the thermophoresis movement of submicron particle in the boundary layer of the rectangular pipe[J]. Proceedings of the CSEE, 2010, 30(2): 92-97.

[14]郭丽潇, 梁栋, 王秀娟, 等. 高温气冷堆蒸汽发生器中的石墨粉尘沉积[J]. 中国粉体技术, 2019, 25(2): 47-53.

GUO L X, LIANG D, WANG X J, et al. Graphite dust deposition in high temperature gas cooled reactor[J]. China Powder Science and Technology, 2019, 25(2): 47-53.

[15]JAVAYARAJU S T, ROELOFS F, KOMEN E M J, et al. RANS modeling of fluid flow and dust deposition in nuclear pebble-beds[J]. Nuclear Engineering and Design, 2016, 308: 222-237.

[16]STEMPNIEWICZ M M, WINTERS L, CASPERSSON S A. Analysis of dust and fission products in a pebble bed NGNP[J]. Nuclear Engineering and Design, 2012, 251: 433-442.

[17]ZHANG T Q, YU S Y, PENG W, et al. Resuspension of multilayer graphite dust particles in a high temperature gas-cooled reactor[J]. Nuclear Engineering and Design, 2017, 322: 497-503.

[18]JU H M, ZHANG Y J, HUANG Z Y, et al. Experimental and operational verification of the HTR-10 once-through steam generator (SG)[J]. Journal of Nuclear Science and Technology, 2004, 41(7): 765-770.

[19]FRIESS Y, YADIGAROGLU G. A generic model for the resuspension of multilayer aerosol deposits by turbulent flow[J]. Nuclear Science and Engineering, 2001,138: 161-176.

[20]REEKS M, HALL D. Kinetic models for particle resuspension in turbulent flows: theory and measurement[J]. Journal of Aerosol Science, 2001, 32(1): 1-31.

[21]张天琦. 高温气冷堆中碳质粉尘重悬浮特性研究[D]. 北京: 清华大学, 2016.

ZHANG T Q. Study on the resuspension characteristics of carbon dust in high temperature gas-cooled reactor[D]. Beijing: Tsinghua University, 2016.

[22]PENG W, ZHEN Y N, YANG X Y, et al. Graphite dust deposition in the HTR-10 steam generator[J]. Particuology, 2013, 11(5): 533-539.

[23]MON M S, GROSS U. Numerical study of fin-spacing effects in annular-finned tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2003, 47(8): 1953-1964.