欧津辰a,b,刘 清a,b,黑福前b,招国栋c,嵇唯杰b,杨昊臻b
(南华大学a. 高性能特种混凝土湖南省重点实验室,b. 土木工程学院,c. 资源环境与安全工程学院,湖南衡阳421001)
引用格式:欧津辰,刘清,招国栋,等.尾矿砂-S-95矿渣粉地聚物对铅离子的固化及其作用机制[J].中国粉体技术,2023,29(3):127-134.
OU J C,LIU Q,ZHAO G D,et al.Properties and mechanism of lead ion solidification with tailing sand-S-95 slag powder geopolymer[J].China Powder Science and Technology,2023,29(3):127-134.
DOI:10.13732/j.issn.1008-5548.2023.03.013
收稿日期: 2022-12-26,修回日期:2023-02-02,在线出版时间:2023-04-23 17:10。
基金项目:湖南省高校创新平台开发基金项目,编号:20k111;湖南省教育厅重点项目,编号:21A0286。
第一作者简介:欧津辰(1997—),男,硕士研究生,研究方向为固废处理。E-mail:983275135@qq.com。
通信作者简介:刘清(1979—),女,博士,教授,硕士生导师,研究方向为矿冶工程污染控制与资源化。E-mail:liuqing197901@163.com。
摘要: 地聚物是一种新型凝胶材料,主要以物理吸附或化学封装的方式固化重金属。以铁矿尾矿砂和S-95矿渣粉为原料,在碱激发剂的作用下制备固化重金属Pb2+地聚物。以正交试验研究原料质量比、水玻璃模数、碱固质量比对地聚物抗压强度的影响;研究Pb2+的添加量对固化体抗压强度的影响,并通过毒性浸出试验及XRD、IR表征手段探究固化效果和机理。结果表明:当尾矿砂与S-95矿渣粉质量比为3∶7、水玻璃模数为1.1、碱固比0.25时,地聚物28 d的抗压强度可达47.1 MPa;当Pb2+添加质量分数为0.5%时,在3种浸出液中固化效果均能达到98%以上;Pb2+以微弱的化学键合作用影响地聚物的网状结构,没有键合到骨架结构中,以非晶体的形式存在。
关键词: 地聚物;铅离子;固化;尾矿砂;矿渣粉
Abstract:Geopolymer is a new type of gel material,which mainly solidifies heavy metals by physical adsorption or chemical encapsulation.Using iron ore tailing sand and S-95 slag powder as raw materials to prepare geopolymer to solidify heavy metal Pb2+ under the action of alkali activator.The effect of factors on the compressive strength of geopolymer was investigated by orthogonal test and the influence of the Pb2+ content on the compressive strength was studied.The curing effect and mechanism were studied by toxic leaching test and characterization by XRD and IR.The results show that when the mass ratio of tailing sand to S-95 slag powder is 3∶7,the modulus of sodium silicate is 1.1,the alkali solid ratio is 0.25,and the water solid ratio is 0.25,the compressive strength of the geopolymer 28 d can reach 47.1 MPa.When the mass fraction of Pb2+ is 0.5%,the curing effect can reach more than 98% in all three leaching solutions.Pb2+ affects the net structure of the geopolymer with weak chemical bonding interaction and exists in a non-crystalline form rather than bonds into the skeletal structure.
Keywords:geopolymer;lead ion;curing;tailing sand;slag powder
参考文献(References):
[1]徐晨茗,鲍立宁,张瑾,等.凤尾蕨对铅污染土壤的修复机理研究[J].安徽农业大学学报,2020,47(2):260-266.
XU C M,BAO L N,ZAHNG J,et al.Study on the remediation mechanism of pteris crassipes on lead contaminated soil[J].Journal of Anhui Agricultural University,2020,47(2):260-266.
[2]王思远,杨树俊,张贺,等.土壤中铅污染来源及其危害综述[J].农业与技术,2022,42(9):78-81.
WANG S Y,YANG S J,ZHANG H,et al.Summary of sources and hazards of lead pollution in soil[J].Agriculture and Technology,2022,42(9):78-81.
[3]傅垣洪.重金属危废的固化处置工艺[J].山西化工,2019,39(3):192-194.
FU H H.Solidification and disposal process for heavy metal hazardous wastes[J].Shanxi Chemical Industry,2019,39(3):192-194.
[4]孙滢斐.微波强化粉煤灰基地聚物的铅渣固化研究[D].武汉:华中科技大学,2020.
SUN Y F.Study on the solidification of fly ash based polymers with lead slag strengthened by microwave[D].Wuhan:Huazhong University of Science and Technology,2020.
[5]邓兆祥,王晓伟,贾铭椿.地质聚合物固化重金属研究进展[J].现代化工,2021,41(11):77-81.
DENG Z X,WANG X W,JIA M C,et al.Research progress in geopolymer solidification of heavy metals[J].Modern Chemical Industry,2021,41(11):77-81.
[6]曾映达,程银汉,瞿广飞,等.固体废物中重金属的固化/稳定化技术研究进展[J/OL].环境化学:1-16.[2022-12-20].http://kns.cnki.net/kcms/detail/11.1844.X.20221130.1946.004.html
ZENG Y D,CHENG H Y,QU G F,et al.Research progress in solidification/stabilization of heavy metals in solid waste[J/OL].Environmental Chemistry:1-16.[2022-12-20].http://kns.cnki.net/kcms/detail/11.1844.X.20221130.1946.004.html.
[7]刘泽,李丽,张媛,等.粉煤灰基地质聚合物固化重金属Pb2+的研究[J].硅酸盐通报,2018,37(4):1382-1386.
LIU Z,ZHANG L,ZHANG Y,et al.Study on solidification of heavy metal Pb2+ with fly ash based geopolymers[J].Silicate Bulletin,2018,37(4):1382-1386.
[8]仇秀梅,刘亚东,严春杰,等.粉煤灰基地质聚合物固化Pb2+及其高温稳定性研究[J].硅酸盐通报,2019,38(7):2281-2287,2294.
QIU X M,LIU Y D,YAN C J,et al.Study on solidification of Pb2+ and high temperature stability of fly ash based geopolymers[J].Silicate Bulletin,2019,38(7):2281-2287,2294.
[9]刘雨杉.磷渣-粉煤灰地聚物的制备及其固化Pb、Cr、U(Ⅵ)的研究[D].衡阳:南华大学,2021.
LIU Y S.Preparation of phosphorus slag fly ash geopolymer and study on its solidification of Pb,Cr,U (Ⅵ)[D].Hengyang:Nanhua University,2021.
[10]张宏鑫,余绍文,张彦鹏,等.广西防城港地区浅层地下水pH值时空分布、成因及对生态环境的影响[J].中国地质,2022,49(3):822-833.
ZAHNG H X,YU S W,ZAHNG Y P,et al.Temporal and spatial distribution,genesis,and impact on ecological environment of shallow groundwater pH in fangchenggang area,guangxi[J].Geology of China,2022,49(3):822-833.
[11]CUCCIA V,FREIRE C B ,LADERIA A.Radwaste oil immobilization in geopolymer after non-destructive treatment[J].Progress in Nuclear Energy,2020,122:103246.
[12]李雅涛.尾煤无机质制备地聚物及其对Pb(Ⅱ)、Cu(Ⅱ)吸附性能研究[D].太原:太原理工大学,2021.
LI Y T.Study on the preparation of geopolymers from inorganic tailings and their adsorption properties for Pb(Ⅱ) and Cu(Ⅱ)[D].Taiyuan:Taiyuan University of Technology,2021.
[13]MUZEK M N,ZELLIC J,JOZIC D.Microstructural characteristics of geopolymers based on alkali-activated fly ash[J].Chemical and Biochemical Enineering Quarterly,2012,26(2):89-95.
[14]GUO B,PAN D,LIU B ,et al.Immobilization mechanism of Pb infly ash-based geopolymer[J].Construction and Building Materials,2017,134:123-130.
[15]KRANZLEIN E,HARMEL J,PÖLLMANN H.Influence of the Si/Al ratio in geopolymers on the stability against acidicattack and the immobilization of Pb(2+) and Zn(2+)[J].Construction and Building Materials,2019,227:116634.
[16]MARTIN K,ALVIN C,HIROFUMI H,et al.Geopolymers from ternary blend of philippine coal fly ash,coal bottom ash and rice hull ash[J].Materials,2016,9(7):1-30.
[17]LOUATI S,BAKLOUTI S,SAMET B.Geopolymers based on phosphoric acid and illito-kaolinitic clay[J].Advances in Materials Science and Engineering,2016(7):1-7.