ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第3期
<返回第3期

细粉体圆锥料仓振动卸料特性

Vibration unloading characteristics of fine powder cone silo

吴 震1a,王利强1,徐立敏2,高伟俊2

(1.江南大学a.机械工程学院,b.江苏省食品先进制造装备技术重点实验室,江苏无锡214122;2.江苏创新包装科技有限公司,江苏扬州225600)


引用格式:吴震,王利强,徐立敏,等.细粉体圆锥料仓振动卸料特性[J].中国粉体技术,2023,29(3):117-126.

WU Z,WANG L Q,XU L M,et al.Vibration unloading characteristics of fine powder cone silo[J].China Powder Science and Technology,2023,29(3):117-126.

DOI:10.13732/j.issn.1008-5548.2023.03.012

收稿日期: 2023-02-14,修回日期:2023-03-27,在线出版时间:2023-04-27 11:55。

基金项目:中央高校基本科研业务费专项资金,编号:JUSRP21115;江苏省食品先进制造装备技术重点实验室自主资助基金资助项目,编号:FMZ201902。

第一作者简介:吴震(1998—),男,硕士研究生,研究方向为包装工艺与机械。E-mail:wzhen19980718@163.com。

通信作者简介:王利强(1977—),男,教授,博士,博士生导师,研究方向为包装机械。E-mail:wlqcom@163.com。


摘要: 为了研究细粉体在圆锥料仓中的振动卸料特性,以钛白粉、纳米碳酸钙、白炭黑3种不同的细粉体作为物料,在自主搭建的圆锥料仓中进行振动卸料实验。定量研究料位高度、振动强度、振动器位置和出料口直径对细粉体卸料的影响,通过正交实验分析不同因素对质量流率的影响。结果表明:当粉体的料位高度位于下锥体时,随着料位高度的增加,质量流率逐渐增大,当料位高度位于上料仓时,料位高度对卸料的质量流率几乎无影响;粉体的流动性越好,振动卸料的效果也越好;振动强度的增加对质量流率呈现先增大后减小的趋势,卸料的稳定性会随振动强度增加而降低;当振动器位置靠近出料口时的物料质量流率最大,提高振动强度可实现振动器在远离出料口时开始卸料;出料口直径的增加对质量流率呈指数上升;不同的粉体存在不同的临界出料口直径,增加振动强度可以减小粉体的临界出料口直径;影响细粉体振动卸料的因素顺序为振动器位置、出料口直径、振动强度。

关键词: 细粉体;圆锥料仓;振动卸料;质量流率

Abstract:In order to explore the vibration discharge characteristics of fine powders in a conical silo,three different fine powders,titanium dioxide,nano calcium carbonate,and silica,were used as experimental materials to conduct vibration discharge experiments in a self-built conical silo.The effects of material level height,vibration intensity,vibrator position,and outlet diameter on the discharge of fine powders were quantitatively studied.The impact of different factors on mass flow rate was analyzed through orthogonal experiments.The results show that when the material level height of the powder is located at the lower cone,the mass flow rate gradually increases with the increasing of the material level height.When the material level height is located at the upper silo,the material level height has almost no effect on the mass flow rate of the discharged material.The results indicate that the better the flowability of the powder,the better its vibration unloading effect.The increase in vibration intensity has a trend of first increasing and then decreasing in mass flow rate,and the stability of discharge will decrease with the increasing in vibration intensity.When the vibrator is located close to the discharge port,the mass flow rate is maximum,and improving the vibration intensity can achieve discharge when the vibrator is far away from the discharge port.Increasing the diameter of the discharge port exponentially increases the mass flow rate.Different powders have different critical discharge port diameters,and increasing vibration intensity can reduce the critical discharge port diameter of powders.The range analysis shows that the sequence of factors affecting fine powder vibration discharge is:vibrator position,discharge port diameter,and vibration intensity.

Keywords:fine powder;conical silo;vibration discharge;mass flow rate


参考文献(References):

[1]WANG X,ZHANG M,QIU L,et al.Improvement of the flavor of powder-form meal replacement:a review of relevant technologies[J].Food and Bioprocess Technology,2023,16(3):492-509.

[2]MA Y,ZHANG H H,MA X M,et al.Effects of different drying methods on the quality of daylily powder[J].Journal of Food Processing and Preservation,2022,46(4):e16467.

[3]JOHNSON B J,SEN M,HANSON J,et al.Stochastic analysis and modeling of pharmaceutical screw feeder mass flow rates[J].International Journal of Pharmaceutics,2022,621:121776.

[4]SISTA K S,DWARAPUDI S,KUMAR D,et al.Physico-chemical properties of mill scale iron powders[J].ISIJ International,2020,60(8):1669-1674.

[5]LIU M,WU H,YAO P,et al.Microstructure and macro properties of sustainable alkali-activated fly ash mortar with various construction waste fines as binder replacement up to 100%[J].Cement and Concrete Composites,2022,134:104733.

[6]XIANG Z,ZHANG M,YAN R,et al.Powder-spreading dynamics and packing quality improvement for laser powder bed fusion additive manufacturing[J].Powder Technology,2021,389:278-291.

[7]LU H,ZHONG J,CAO G P,et al.Gravitational discharge of fine dry powders with asperities from a conical hopper[J].AIChE Journal,2018,64(2):427-436.

[8]吴震,王利强,徐立敏,等.粉体料仓设计及卸料特性综述[J].中国粉体技术,2023,29(1):19-30.

WU Z,WANG L Q,XU L M,et al.Powder silo design and discharge characteristics:a review[J].China Powder Science and Technology,2023,29(1):19-30.

[9]SHENG L T,HSIAU S S,WEN C Y.Experimental investigation on air bubble dynamics during fine powder discharge in a silo[J].Advanced Powder Technology,2021,32(1):106-120.

[10]TANG J,LU H,GUO X,et al.Discharge characteristics of non-gravity-driven powder in horizontal silos[J].Powder Technology,2022,400:117234.

[11]ZHANG C,QIU C,PU C,et al.The mechanism of vibrations-aided gravitational flow with overhanging style in hopper[J].Powder Technology,2018,327:291-302.

[12]KOLLMANN T,TOMAS J.Effect of applied vibration on silo hopper design[J].Particulate Science and Technology,2002,20(1):15-31.

[13]JAFARI A,ABOLGHANDI A,GHARIBI A,et al.Effects of local vibration on silo discharge and jamming:Employing an experimental approach[J].Journal of Particle Science and Technology,2018,4(2):91-100.

[14]DU J,LIU C,TONG L,et al.Effects of vibrations on tilted silo discharge[J].Chemical Engineering Research and Design,2021,171:247-253.

[15]PASCOT A,MOREL J Y,ANTONYUK S,et al.Discharge of vibrated granular silo:a grain scale approach[J].Powder Technology,2022,397:116998.

[16]DU J,LIU C,WANG C,et al.Discharge of granular materials in a hemispherical bottom silo under vertical vibration[J].Powder Technology,2020,372:128-135.

[17]李伟宏.超细粉末涂料的粒度分布控制及流态化特性的研究[D].天津:天津大学,2019.

LI W H.Research on particle size distribution control and fluidization properties of ultrafine powder coatings[D].Tianjin:Tianjing University,2019.

[18]国家标准化管理委员会.分子筛堆积密度测定方法:GB/T 6286—2021[S].上海:质检出版社,2021.

Standardization Administration,Determination of bulk density for molecular sieve:GB/T 6286—2021[S].Beijing:State Administration for Market Regulation,2021.

[19]JUAREZ-ENRIQUEZ E,OLIVAS G I,ZAMUDIO-FLORES P B,et al.A review on the influence of water on food powder flowability[J].Journal of Food Process Engineering,2022,45(5):e14031.

[20]Al-HASHEMI H M B,Al-AMOUDI O S B.A review on the angle of repose of granular materials[J].Powder Technology,2018,330:397-417.

[21]LIU D,ZHANG W,TANG Y,et al.Orthogonal experimental study on concrete properties of machine-made tuff sand[J].Materials,2022,15(10):3516.

[22]刘杰,徐祥,阳绍军,等.锥形料仓中粉体的重力卸料特性[J].中国粉体技术,2014,20(3):1-6.

LIU J,XU X,YANG S J,et al.Characteristics of gravity discharge of powder in conical hoppers[J].China Powder Science and Technology,2014,20(3):1-6.

[23]ZHANG Z,LIU Y,ZHENG B,et al.Discharge characteristics of binary particles in a rectangular hopper with inclined bottom[J].Computational Particle Mechanics,2021,8:315-324.

[24]王会,贾富国,韩燕龙,等.圆锥料仓内颗粒周期性脉动特征研究[J].物理学报,2017,66(1):192-202.

WANG H,JIA F G,HAN Y L,et al.Cyclical pulsation properties of particles in cone silo[J].Acta Physica Sinica,2017,66(1):192-202.

[25]JANDA A,MAZA D,GARCIMARTIN A,et al.Unjamming a granular hopper by vibration[J].Europhysics Letters,2009,87(2):24002.

[26]CREWDSON B J,ORMOND A L,NEDDERMAN R M.Air-impeded discharge of fine particles from a hopper[J].Powder Technology,1977,16(2):197-207.

[27]王胜,李宗齐,陈岚,等.基于振动微量下料技术的药物粉末流动性检测方法[J].上海理工大学学报,2021,43(2):163-169.

WANG S,LI Z Q,CHEN L,et al.Detection method of drug powder flowability based on vibratory micro-feeding technology[J].Journal of University of Shanghai for Science and Technology,2021,43(2):163-169.

[28]陆海峰,阮琥,曹嘉琨,等.细粉下料过程的气固流体动力学作用分析[J].化工学报,2021,72(11):5533-5542.

LU H F,RUAN H,CAO J K,et al.Analysis of the gas-solid fluid dynamic interaction on fine powder discharge[J].CIESC Journal,2021,72(11):5533-5542.