伍 林1,3,于化龙1,胡 霞2,余红杰4,彭 威1,魏耀东1
1.中国石油大学(北京)克拉玛依校区 工学院,新疆克拉玛依834000;
2.克拉玛依职业技术学院机械系,新疆克拉玛依834000;
3.国家知识产权局专利局专利审查协作四川中心,四川成都610056;
4.中国石油川庆钻探工程有限责任公司,四川成都610056
引用格式:伍林,于化龙,胡霞,等.鼓泡流化床稀相空间颗粒粒度分布的时变特性实验[J].中国粉体技术,2023,29(3):12-20.
WU L,YU H L,HU X,et al.Time-varying characteristics of particle size distribution in dilute phase space in bubbling fluidized bed[J].China Powder Science and Technology,2023,29(3):12-20.
收稿日期: 2022-10-04,修回日期:2022-11-24,在线出版时间:2023-04-10 12:13。
DOI:10.13732/j.issn.1008-5548.2023.03.002
基金项目:国家自然科学基金项目,编号:21776305。
第一作者简介:伍林(1989—),男,硕士研究生,研究方向为石油化工设备。E-mail:405587230@qq.com。
通信作者简介:于化龙(1974—),男,副教授,博士,硕士生导师,研究方向为工程力学、流态化。E-mail:yuhualong@cup.edu.cn。
摘要: 鼓泡流化床稀相空间的催化剂颗粒粒度分布一方面与流化床流化速度有关,另一方面与流化床中藏量的细小颗粒跑损有关,即随着流化床操作的连续进行,流化床系统中的细颗粒不可避免的存在跑损,进而影响到稀相空间的颗粒粒度分布。由于这种跑损是连续发生的,因此稀相的颗粒粒度分布变化具有时变特性。选用催化裂化平衡催化剂和二维流化床,在连续流化操作过程中采集稀相空间中的颗粒样品,分析颗粒的粒度分布,考察稀相空间中颗粒粒度分布随流化操作时间的变化。结果表明:随着流化床系统中细颗粒的跑损,稀相颗粒粒度分布的中位粒径和峭度逐渐增加,稀相空间的颗粒逐渐粗化,经过一段流化操作时间后颗粒粒度分布变化趋于稳定。
关键词: 鼓泡流化床;稀相空间;粒度分布;时变特性;催化剂
Abstract:The particle size distribution of catalyst in the dilute phase space of a bubbling fluidized bed is related to the fluidization velocity of the fluidized bed,and also related to the loss of fine particles in the fluidized bed.As the fluidization process operates continuously,the fine particles loss inevitably from fluidized bed,which directly influences the particle size distribution in the dilute phase space.Therefore,the particle size distribution in the dilute phase space has a time-varying characteristic.In this work,catalytic cracking balance catalyst and two-dimensional fluidized bed were selected to collect particle samples and analyze the particle size distribution in the dilute phase space,investigate the particle size distribution varying with time during the continuous fluidization.Experimental results show that the particle size distribution in the dilute phase space become coarser,median particle size and kurtosis become bigger with fine particle loss and tends to be stable after a period of operation.
Keywords:bubbling fluidized bed;dilute phase space;particle size distribution;time-varying characteristics;catalyst
参考文献(References):
[1]CHEW J W,CAHYADI A,HRENYA C M,et al.Review of entrainment correlations in gas-solid fluidization[J].Chemical Engineering Journal,2015,260:152-171.
[2]卢春喜,徐亦方,时铭显,等.流化催化裂化再生器湍流流化床密相区两相流动规律的研究[J].石油学报(石油加工),1996(4):1-8.
LU C X,XU Y F,SHI M X,et al.A study on the two phase flow in the dense phase region of the turbulent fluidized beds of FCC regenerator[J].Acta Petrolei Sinica(Petroleum Processing Section),1996(4):1-8.
[3] CAHYADI A,NEUMAYER A H,HRENYA C M,et al.Comparative study of transport disengaging height (TDH) correlations in gas-solid fluidization[J].Powder Technology,2015,275:220-238.
[4]TARDIN P R,GOLDSTEIN L,BIZZO W A.Entrainment of FCC particles from a pilot-scale bubbling fluidized bed.Part 1:experimental study[J].Powder Technology,2015,269:596-604.
[5]王德武,卢春喜.耦合流化床提升管内固含率径向分布及沿轴向的发展[J].过程工程学报,2008,8(2):217-223.
WANG D W,LU C X.Radial distribution and axial development of solids hold-up in the riser coupled with fluidized bed[J].The Chinese Journal of Process Engineering,2008,8(2):217-223.
[6]王德武,卢春喜,丁姗姗,等.提升管与流化床耦合反应器内固含率的轴向分布[J].石油炼制与化工,2007,38(11):41-45.
WANG D W,LU C X,DING S S,et al.Axial distributions of solids holdup in a riser-fluidized bed compound reactor[J].Petroleum Processing and Petrochemicals,2007,38(11):41-45.
[7]ZHANG X Z,HAN Y D,LI D P,et al.Study on attrition of spherical-shaped Mo/HZSM-5 catalyst for methane dehydro-aromatization in a gas-solid fluidized bed[J].Chinese Journal of Chemical Engineering,2021,38(10):172-183.
[8]REPPENHAGEN J,SCHETZSCHEN A,WERTHER J.Find the optimum cyclone size with respect to the fines in pneumatic conveying systems[J].Powder Technology,2000,112(3):251-255.
[9]罗辉,常增明,陈文龙,等.催化裂化跑损催化剂的激光粒度及SEM分析[J].炼油技术与工程,2009,39(10):53-56.
LUO H,CHANG Z M,CHEN W L,et al.Study on catalyst loss in FCC by laser particle size and sem analysis[J].Petroleum Refinery Engineering,2009,39(10):53-56.
[10]金海峰,张永民,李国锋,等.甲醇制烯烃装置催化剂细粉跑损问题剖析[J].石油学报(石油加工),2021,37(4):779-788.
JIN H F,ZHANG Y M,LI G F,et al.Root cause of fine catalyst particle loss in methanol to olefin unit[J].Acta Petrolei Sinica(Petroleum Processing Section),2021,37(4):779-788.
[11]CAN Z,LUNGU M,WANG J,et al.Dynamic characteristics of solids circulation establishment in laboratory and industrial circulating fluidized beds with sweeping bend return[J].Powder Technology,2016,301:211-219.
[12]WARDAG A,LARACHI F.Bed expansion and disengagement in corrugated-wall bubbling fluidized beds[J].Chemical Engineering Science,2012,81:273-284.
[13]WU X,PENG J,ZHANG Y,et al.Elutriation characteristics of multi-component mixtures in a fluidized bed pyrolysis process[J].Particuology,2021,58:131-138.
[14]TANAKA I,SHINOHRAR H.Elutriation of fines from fluidized bed-study of a transport disengaging height[J].Journal of Chemical Engineering of Japan.1972,5(1):57-61.
[15]HORIO M,WEN C Y.Simulation of fluidized bed combustors:l.gombustion efficiency and temperature profile[J].AIChE Symposium Series.1976,74:101-111.
[16]曹汉昌.流化催化裂化反应器和再生器催化剂密度的预测[J].石油炼制与化工,1983(11):12-21.
CAO H C.Prediction of fluid catalytic cracking reactor and regenerator catalyst density[J].Petroleum Processing and Petrochemicals,1983(11):12-21.
[17]ZENZ F A,WEIL N A.A theoretical-empirical approach to the mechanism of particle entrainment from fluidized beds[J].AIChE Journal,1958,4(4):472-479.
[18]LEWIS W K,GILLILAND E R,LANG P M.Entrainment from fluidized bed[J].Chemical Engineering Progress,Symposium Series,1962,58:65-78.
[19]杨智勇,王菁,蔡香丽,等.催化裂化装置旋风分离器工艺故障的原因分析[J].中国粉体技术,2020,26(1):75-80.
YANG Z Y,WANG J,CAI X L,et al.Cause analysis of process fault of cyclone separator in FCCU[J].China Powder Science and Technology,2020,26(1):75-80.
[20]郭翠翠,李正,张金庆,等.催化裂化装置催化剂跑损诊断方法[J].工业催化,2021,29(9):62-66.
GUO C C,LI Z,ZHANG J Q,et al.Diagnosis method of catalyst loss in FCC unit[J].Industrial Catalysis,2021,29(9):62-66.