ISSN 1008-5548

CN 37-1316/TU

2021年27卷  第1期
<返回第1期

纳米SiO2粉体在水泥液相中的分散性

Dispersion of nano-SiO2 powder in cement liquid phase

王建荣a,石 捷b,关 芳b,侯鹏坤b

(济南大学 a.材料科学与工程学院; b.山东省建筑材料制备及测试技术重点实验室,山东 济南 250022)


DOI:10.13732/j.issn.1008-5548.2021.01.011

收稿日期:2020-06-27,修回日期:2020-09-21,在线出版时间:2020-11-02 10:36。

基金项目:国家自然科学基金项目,编号:51672107;山东省科技重大专项(新兴产业)项目,编号:2015ZDXX0702B01。

第一作者简介:王建荣(1966—),女,学士,高级实验师,研究方向为粉体合成与应用研究。E-mail:mse_wangjr@ujn.edu.cn。


摘要:针对纳米SiO2存在颗粒团聚现象,借助LS13320激光粒度仪、SEM和TEM测试手段,研究水泥液相中纳米SiO2粉体的粒度分布及其分散性。通过超声脉冲技术分散纳米SiO2粉体,并确定最优超声功率;研究表面活性剂添加顺序对水泥液相中纳米SiO2粒度分布的影响。结果表明:超声脉冲与表面活性剂协同作用为纳米SiO2最佳分散方式;获得纳米SiO2最佳粒度分布的实验条件为超声时间5 min、超声功率360 W;在纳米SiO2加入到水泥液相之后再加入表面活性剂,这种添加顺序更有利于提高纳米SiO2分散性。

关键词:纳米SiO2;水泥液相;分散性;超声脉冲;表面活性剂

Abstract:Due to the particle agglomeration phenomenon of nano-SiO2,the particle size distribution and dispersion of nano-SiO2 powder in cement liquid phase were studied by means of LS13320 laser particle size,SEM and TEM. Nano-SiO2 powder was dispersed by ultrasonic pulse technology and the optimal ultrasonic power was determined. The effect of surfactant addition sequence on the particle size distribution of nano-SiO2 in cement liquid phase was studied. The results show that the synergistic effect of ultrasonic pulse and surfactant is the best dispersion method of nano-SiO2. The experimental conditions for obtaining the optimal nano-SiO2 particle size distribution are 5 min ultrasonic time and 360 W ultrasonic power. Surfactant is added to the cement liquid phase after the addition of nano-SiO2,which is more conducive to the dispersion of nano-SiO2.

Keywords:nano-SiO2; cement liquid phase; dispersion; ultrasonic pulse; surfactant


参考文献(References):

[1]刘铁军,乔国富,邹笃建.纳米SiO2对混凝土材料阻尼性能的改良研究[J].功能材料,2011,42(7):1184-1188,1192.

[2]LI G Y.Properties of high-volume fly ash concrete incorporating nano-SiO2[J].Cement and Concrete Research,2004,34(6):1043-1049.

[3]曹培,李秀艳,赵敏南,等.SiO2-TiO2纳米复合材料的制备及其应用研究[J].硅酸盐通报,2014,33(12):3213-3218.

[4]WANG X F,HUANG Y J,WU G Y,et al.Effect of nano-SiO2,on strength,shrinkage and cracking sensitivity of lightweight aggregate concrete[J].Construction and Building Materials,2018,175:115-125.

[5]WANG D,HOU P K,ZHANG L N,et al.Photocatalytic and hydrophobic activity of cement-based materials from benzyl-terminated-TiO2 spheres with core-shell structures[J].Construction and Building Materials,2017,148:176-183.

[6]LAVERGNE F,BELHADI R,CARRIAT J,et al.Effect of nano-silica particles on the hydration,the rheology and the strength development of a blended cement paste[J].Cement and Concrete Composites,2019,95:42-55.

[7]KONG D Y,DU X F,WEI S,et al.Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials[J].Construction and Building Materials,2012,37(7):7-15.

[8]KONG D Y,CORR D J,HOU P K,et al.Influence of colloidal silica sol on fresh properties of cement paste as compared to nano-silica powder with agglomerates in micron-scale[J].Cement and Concrete Composites,2015,63:30-41.

[9]RONG Z D,SUN W,XIAO H J,et al.Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites[J].Cement and Concrete Composites,2015,56:25-31.

[10]RECHES Y,THOMSON K,HELBING M,et al.Agglomeration and reactivity of nanoparticles of SiO2,TiO2,Al2O3,Fe2O3,and clays in cement pastes and effects on compressive strength at ambient and elevated temperatures[J].Construction and Building Materials,2018,167(10):860-873.

[11]CHEN Y.A review on the effects of nanoparticles on properties of self-compacting concrete[J].IOP Conference Series:Materials Science and Engineering,2018,452(2):022134.

[12]AGUBRA V,OWUOR P,HOSUR M.Influence of nanoclay dispersion methods on the mechanical behavior of E-glass/epoxy nanocomposites[J].Nanomaterials,2013,3(3):550-563.

[13]MENG Q Y,ZHENG X,WU D M.Analysis of nanogranule dispersion using the ISBS method[J].The European Physical Journal Applied Physics,2007,38(3):239-242.

[14]BLOTT S J,CROFT D J,PYE K,et al.Particle size analysis by laser diffraction[J].Geological Society London Special Publications,2007,232(1):63-73.

[15]MILLER B A,SCHAETZL,RANDALL J.Precision of soil particle size analysis using laser diffractometry[J].Soil Science Society of America Journal,2012,76(5):1719-1727.

[16]SYUNSUKE S,HAYATO K,AZHAR U M,et al.Comparison of dispersion behavior of agglomerated particles in liquid between ultrasonic irradiation and mechanical stirring[J].Ultrasonics Sonochemistry,2018,40 (Pt A):822-831.

[17]蔡亚梅.纳米SiO2的分散性及其改性水泥基材料防护层的制备及性能研究[D].济南:济南大学,2017.

[18]MANDZY N,GRULKE E,DRUFFEL T.Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions[J].Powder Technology,2005,160(2):121-126.

[19]BAVEYE P,LABA M.Aggregation and toxicology of titanium dioxide nanoparticles[J].Environ Health Perspect,2008,116(4):A152-A152.

[20]CHOWDHURY I,HONG Y,WALKER S L.Container to characterization:impacts of metal oxide handling,preparation,and solution chemistry on particle stability[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,368(1/2/3):91-95.

[21]PLANK J,SCHROEFL C,GRUBER M,et al.Effectiveness of polycarboxylate superplasticizers in ultra-high strength concrete:the importance of PCE compatibility with silica fume[J].Journal of Advanced Concrete Technology,2009,7(1):5-12.