ISSN 1008-5548

CN 37-1316/TU

2021年27卷  第1期
<返回第1期

膜分散微反应器制备γ-氧化铝千克级放大试验

Kilogram-scale magnification test for preparation of γ-Al2O3 in membrane dispersion microreactor

万莉莎1,2,李 菲1,2,赵申远2,张建辉2,王玉琪1,王玉军2

(1.西北大学 化工学院,陕西 西安 710069;2.清华大学 化学工程联合国家重点实验室,北京 100084)


DOI:10.13732/j.issn.1008-5548.2021.01.003

收稿日期:2020-08-12,修回日期:2020-10-08,在线出版时间:2020-11-02 10:31。

基金项目:国家重点研发计划项目,编号:2019YFA0905100;国家自然科学基金项目,编号:21878169,21991102;清华大学自主科研计划项目,编号:2018Z05JZY010。

第一作者简介:万莉莎(1995—),女,硕士研究生,研究方向为膜分散微反应器制备纳米材料。E-mail:785064909@qq.com。

通信作者简介:

王玉琪(1974—),男,博士,教授,博士生导师,研究方向为材料与能源化工、分离技术与反应工程。E-mail:wangyuqi@nwu.edu.cn。

王玉军(1973—),男,博士,教授,博士生导师,研究方向为膜分离及膜反应分离一体化技术、高效分离材料制备。E-mail:wangyujun@mail.tsinghua.edu.cn。


摘要:以偏铝酸钠为分散相、硫酸铝为连续相,采用共沉淀方法在膜分散微反应器中进行纤维状γ-氧化铝制备工艺的千克级放大试验;研究不同膜分散微反应器的尺寸、NaAlO2流量、Al2(SO4)3质量浓度、反应时间、老化时间、洗涤方式和干燥温度对γ-氧化铝性质的影响,确定千克级放大制备工艺的最佳参数;通过TEM和XRD表征γ-氧化铝的性质和微观结构,验证放大试验的有效性。结果表明:千克级放大制备工艺的一组最佳参数为:膜分散微反应器的半径和高度分别为8 mm,偏铝酸钠流量为36 L/h,硫酸铝质量浓度为30 g/L,反应时间为1 h,老化时间为0~1 h,洗涤方式为碳酸钠-磷酸洗涤方式,干燥温度为120℃,制得的γ-氧化铝孔容为1.40 mL/g,平均孔径为13.1 nm,比表面积高达429.9 m2/g。

关键词:膜分散微反应器;γ-氧化铝;放大试验

Abstract:Kilogram-scale test for preparation of fibrous γ-Al2O3 in membrane microreactor with co-precipitation method was carried out by using NaAlO2 as the dispersed phase and Al2(SO4)3 as the continuous phase. The effects of different membrane dispersion microreactor size,NaAlO2 flow rate,Al2(SO4)3 mass concentration,reaction time,aging time,washing method and drying temperature on the properties of γ-Al2O3 were studied. The properties and microstructure of γ-Al2O3 were characterized by TEM and XRD to verify the effectiveness of the amplification test. The results show that the optimum parameters of kilogram-scale amplification process are as follows: the radius and height of membrane dispersion microreactor are 8 mm,flow rate of NaAlO2 is36 L/h,mass concentration of Al2(SO4)3 is 30 g/L,reaction time is 1 h,aging time is from 0 to 1 h,washing method is sodium carbonate-phosphoric acid washing method and drying temperature is 120 ℃ . The pore volume of prepared γ-Al2O3 is 1. 40 m L/g,average pore diameter is 13. 1 nm and specific surface area is up to 429. 9 m2/g.

Keywords:membrane dispersion microreactor; γ-Al2O3; scale-up test


参考文献(References):

[1]BAI P,WU P P,YAN Z F,et al.Cation-anion double hydrolysis derived mesoporous γ-Al2O3 as an environmentally friendly and efficient aldol reaction catalyst[J].J Mater Chem,2009,19(11):1554-1563.

[2]HICKS W H,CASTAGNOLA N B,ZHANG Z R,et al.Lathlike mesostructured γ-alumina as a hydridesulfurization catalyst support[J].Applied Catalysis A,General,2003,254(2):311-317.

[3]ZHANG Z R,THOMAS J P.Mesostructured γ-Al2O3 with a lathlike framework morphology[J].Journal of the American Chemical Society,2012,124(41):12294-12301.

[4]POURSANI S A,NILCHI A,HASSANI A H,et al.A novel method for synthesis of nano-γ-Al2O3:study of adsorption behavior of chromium,nickel,cadmium and lead ions[J].International Journal of Environmental Science and Technology,2015,12(6):2003-2014.

[5]TIAN J Y,TIAN P,PANG H C,et al.Fabrication synthesis of porous Al2O3 hollow microspheres and its superior adsorption performance for organic dye[J].Microporous and Mesoporous Materiails,2016,223:27-34.

[6]POURKHALIL M,IZAD I N,RASHIDI A,et al.Synthesis of CeOx/γ-Al2O3 catalyst for the NH3-SCR of NOx[J].Materials Research Bulletin,2017,97:1-5.

[7]PAN,ZHANG W Q,ZHENG G S,et al.Degradation of p-nitrophenol using CuO/Al2O3 as a Fenton-like catalyst under microwave irradiation[J].Rsc Advances,2015,5(34):27043-27051.

[8]TISHKEVICH D I,VOROBJOVA A I,SHIMANOVICH D L,et al.Formation and corrosion properties of Ni-based composite material in the anodic alumina porous matrix[J].J Alloys Compd,2019,804:139-146.

[9]ZHEIVOT V I,PARKHOMCHUK E V,SASHKINA K A,et al.Silica and alumina based functional materials:substructures,adsorption and gas chromatographic properties[J].Microporous and Mesoporous Materials,2015,202:57-67.

[10]ZANG W J,GUO F,LIU J C,et al.Lightweight alumina based fibrous ceramics with different high temperature binder[J].Ceramics International,2016,42(8):10310-10316.

[11]BOKHIMI X,TOLEDO-ANTONIO A J,GUZMN-CASTILLO M L,et al.Relationship between crystallite size and bond lengths in boehmite[J].J Solid State Chem,2001,159(1):32-40.

[12]BOKHIMI X,SNCHEZ-VALENTE J,PEDRAZA F.Crystallization of sol-gel boehmite via hydrothermal annealing[J].J Solid State Chem,2002,166(1):182-190.

[13]BA DYGA J,POHORECKI R.Turbulent micromixing in chemical reactors:a review[J].The Chemical Engineering Journal and The Biochemical Engineering Journal,1995,58(2):183-195.

[14]GONG X Q,WANG Y W,IHLI J,et al.The crystal hotel:a microfluidic approach to biomimetic crystallization[J].Advanced Materials,2015,27(45):7395-7400.

[15]ABOU-HASSAN A,NEVEN S,DUPUIS V,et al.Synthesis of cobalt ferrite nanoparticles in continuous-flow microreac-tors[J].Rsc Advances,2012,2(30):11263-11266.

[16]JIA Z Q,LIU Z Z.Membrane-dispersion reactor in homogeneous liquid process[J].Journal of Chemical Technology and Biotechnology,2013,88(2):163-168.

[17]GÜNTHER A,JENSEN K F.Multiphase microfluidics:from flow characteristics to chemical and materials synthesis[J].Lab on A Chip,2006,6(12):1487-1503.

[18]DU L,TAN J,WANG K,et al.Controllable preparation of SiO2 nanoparticles using a microfiltration membrane dispersion microreactor[J].Industrial and Engineering Chemistry Research,2011,50(14):8536-8541.

[19]NISISAKO T,TORII T.Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles[J].Lab on a Chip,2008,8(2):287-293.

[20]PAN J J,SHAO J Y,QU H B,et al.Ethanol precipitation of codonopsis radix concentrate with a membrane dispersion micromixer[J].J Clean Prod,2020,251.

[21]WAN Y C,LIU Y B,WANG Y J,et al.Preparation of large-pore-volume γ-alumina nanofibers with a narrow pore size distribution in a membrane dispersion microreactor[J].Industrial &Engineering Chemistry Research,2017,56(31):8888-8894.

[22]Al-RAWASHDEH M,ZALUCKU J,MÜLLER C,et al.Phenylacetylene hydrogenation over[Rh(NBD)(PPh3)2]BF4 catalyst in a numbered-up microchannels reactor[J].Industrial and Engineering Chemistry Research,2013,52:11516-11526.

[23]ZHANG J S,WANG K,TEIXEIRA A R,et al.Design and scaling up of microchemical systems:a review[J].Annual Review of Chemical and Biomolecular Engineering,2017,8:285-305.

[24]SOTOWA K-I,SUGITAMA S,NAKAGAWA K,et al.Flow uniformity in deep microchannel reactor under high throughput conditions[J].Organic Process Research and Development,2009,13(5):1026-1031.

[25]LIU G T,WANG K,LU Y C,et al.Liquid-liquid microflows and mass transfer performance in slit-like microchan-nels[J].Chemical Engineering Journal,2014,258:34-42.

[26]徐登清.大孔拟薄水铝石制备及加氢脱氧的研究[D].曲阜:曲阜师范大学,2011.

[27]MULLIN J W.Crystallization[M].4th ed.Massachusetts:Reed Educational and Professional Publishing Ltd,2001:536-575.

[28]苗壮,史建公,郝建薇,等.拟薄水铝石的胶溶性与结构的关系[J].石油学报(石油加工),2016,32(3):493-500.

[29]尹衍升,张景德.氧化铝陶瓷及其复合材料[M].北京:化学工业出版社,2001:69-85.