ISSN 1008-5548

CN 37-1316/TU

2021年27卷  第2期
<返回第2期

钒酸盐荧光粉研究进展 

Research progress on phosphors of vanadat

张 磊1,2, 张雪峰2, 赵朝勇2, 陈 敏2

(1. 西华大学材料科学与工程学院, 四川成都610039;2. 攀枝花学院钒钛学院, 四川攀枝花617000)


DOI:10.13732/j.issn.1008-5548.2021.02.014

收稿日期: 2020-09-21, 修回日期:2020-10-06,在线出版时间:2020-12-22 16:32。

基金项目:四川省应用基础重点项目,编号:2019YJ0688。

第一作者简介:张磊(1994—),男,硕士研究生,助教,研究方向为钒酸盐发光材料的研究与开发。E-mail:836369815@qq.com。

通信作者简介:张雪峰(1965—),男,硕士,教授,硕士生导师,研究方向为钒钛功能材料。E-mail:532256335@qq.com。


摘要:综述钒酸盐荧光粉的发展历程,发光机理,高温固相反应法、水热法、溶胶-凝胶法、燃烧法等主要制备方法,以及Eu3+、Sm3+、Dy3+、稀土离子共掺杂、碱(土)金属离子与稀土离子共掺杂等离子掺杂钒酸盐荧光粉的研究现状;认为制备方法的改进能够使钒酸盐荧光粉的晶粒尺寸从微米化向纳米化发展,从而能够更好地应用于照明、显示器、光学温度传感器、色温指示器等领域;提出探索不同组成和晶体结构的钒酸盐基质以及离子共掺杂的作用将是该领域研究的重要方向。

关键词:钒酸盐;荧光粉;稀土离子;光致发光

Abstract:The development history,luminescence mechanism and the main preparation methods,such as high temperature solidstate reaction process,hydrothermal method,sol-gel method,combustion method,of vanadate phosphors were reviewed. The research progress of ions-doped vanadate phosphors,including Eu3 +,Sm3 +,Dy3 +,rare earth ions co-doped,and co-doped of alkali or alkaline earth metal ion and rare earth ion,were summarized. It is considered that the improvement of the preparation method can make the grain size of vanadate phosphors develop from micrometer to nanometer,which can be better used in the fields of lighting,displays,optical temperature sensors,color temperature indicators,etc. It is suggested that exploring vanadate substrates with different composition and crystal structure and the co-doped ions will be the main research direction in this field.

Keywords:vanadate; phosphor; rare earth ions; photoluminescence


参考文献:

[1]SCHUBERT E F, KIM J K. Solid-state light sources getting smart[J]. Science, 2005, 308(5726): 1274-1278.

[2]HUMPHREYS C J. Solid-state lighting[J]. MRS Bulletin, 2008, 33(4): 459-470.

[3]郭锐, 汤松龄, 程抱昌, 等. 白光LED用Eu3+激活红色荧光粉的研究进展[J]. 材料导报, 2013, 27(15): 1-7.

[4]XIA Z G, XU Z H, CHEN M Y, et al. Recent developments in the new inorganic solid-state LED phosphors[J]. Dalton Transactions, 2016, 45(28): 11214-11232.

[5]PHILLIPS J M, COLTRIN M E, CRAWFORD M H, et al. Research challenges to ultra-efficient inorganic solid-state lighting[J]. Laser and Photonics Reviews, 2007, 1(4): 307-333.

[6]YU M, LIN J, FANG J. Silica spheres coated with YVO4: Eu3+ layers via sol-gel process: a simple method to obtain spherical core-shell phosphors[J]. Chemistry of Materials, 2005, 17(7): 1783-1791.

[7]KAUR H, JAYASIMHADRI M. Color tunable photoluminescence properties in Eu3+ doped calcium bismuth vanadate phosphors for luminescent devices[J]. Ceramics International, 2019, 45(12): 15385-15393.

[8]SHARMA A, VARSHNEY M, CHAE K-H, et al. Electronic structure and luminescence assets in white-light emitting Ca2V2O7, Sr2V2O7 and Ba2V2O7 pyro-vanadates: X-ray absorption spectroscopy investigations[J]. RSC Advances, 2018, 8(46): 26423-26431.

[9]SHISINA S, DAS S, SOM S, et al. Structure and optoelectronic properties of palmierite structured Ba2Y0.67δ0.33V2O8:Eu3+ red phosphors for n-UV and blue diode based warm white light systems [J]. Journal of Alloys and Compounds, 2019, 802: 723-732.

[10]刘凤珍, 邵鑫, 尹贻彬, 等. 稀土离子掺杂钒酸盐发光材料的研究现状及进展[J]. 中国材料进展, 2011, 30(4): 44-48.

[11]沈雷军, 李波, 王忠志, 等. 稀土钒酸盐体系发光材料研究进展[J]. 稀土, 2015, 36(6): 129-137.

[12]KUMARI P, BAITHA P K, MANAM J. Structural and photoluminescence properties of red-light emitting YVO4:Eu3+ phosphor synthesized by combustion and solid-state reaction techniques: a comparative study[J]. Indian Journal of Physics, 2015, 89(12): 1297-1306.

[13]VAN UITERT L G, SODEN R R, LINARES R C. Enhancement of rare-earth ion fluorescence by lattice processes in oxides[J]. The Journal of Chemical Physics, 1962, 36(7): 1793-1796.

[14]LEVINE A K, PALILLA F C. A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television[J]. Applied Physics Letters, 1964, 5(6): 118-120.

[15]BRIXNER L H, ABRAMSON E. On the luminescent properties of the rare earth vanadates[J]. Journal of the Electrochemical Society, 1965, 112(1): 70-74.

[16]BRIXNER L H, FLOURNOY P A. Calcium orthovanadate Ca3(VO4)2: a new laser host crystal[J]. Journal of the Electrochemical Society, 1965, 112(3): 303-308.

[17]MIN X, HUANG Z H, FANG M H, et al. Luminescence properties of self-activated M3(VO4)2(M=Mg, Ca, Sr, and Ba) phosphors synthesized by solid-state reaction method[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(4): 3684-3689.

[18]BEDYAL A K, KUMAR V, SWART H C. Charge compensated derived enhanced red emission from Sr3(VO4)2:Eu3+ nanophosphors for white light emitting diodes and flat panel displays[J]. Journal of Alloys and Compounds, 2017, 709: 362-372.

[19]DU P, HUA Y B, YU J S. Energy transfer from

group to Sm3+ ions in Ba3(VO4)2:3xSm3+ microparticles: a bifunctional platform for simultaneous optical thermometer and safety sign[J]. Chemical Engineering Journal, 2018, 352: 352-359.

[20]QIAN T T, FAN B, WANG H L, et al. Structure and luminescence properties of Zn3V2O8 yellow phosphor for white light emitting diodes[J]. Chemical Physics Letters, 2019, 715: 34-39.

[21]牛晓飞, 张明玉. (Ca, Sr, Ba)3V2O8的制备和发光性能研究[J]. 材料导报, 2013, 27(12): 39-42.

[22]BAYER G. Vanadates A3B2V3O12 with garnet structure[J]. Journal of the American Ceramic Society, 1965, 48(11): 600-600.

[23]NAKATSUKA A, IKUTA Y, YOSHIASA A, et al. Vanadate garnet, Ca2NaMg2V3O12[J]. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59: I133-I135.

[24]BHARAT L K, KRISHNA K G, YU J S. Effect of transition metal ion (Nb5+) doping on the luminescence properties of self-activated Ca2AgZn2V3O12 phosphors[J]. Journal of Alloys and Compounds, 2017, 699: 756-762.

[25]BLASSE G, BRIL A. Fluorescence of Eu3+-activated garnets containing pentavalent vanadium[J]. Journal of the Electrochemical Society, 1967, 114(3): 250-252.

[26]ZHOU Jiangcong, HUANG Xiaotian, YOU Jinhui, et al. Synthesis, energy transfer and multicolor luminescent property of Eu3+-doped LiCa2Mg2V3O12 phosphors for warm white light-emitting diodes[J]. Ceramics International, 2019, 45(11): 13832-13837.

[27]ZHOU Huitao, GUO Ning, LIANG Qimeng, et al. Novel ratiometric optical thermometry based on dual luminescent centers from europium doped LiCa3MgV3O12 phosphor[J]. Ceramics International, 2019, 45(13): 16651-16657.

[28]LI J F, QIU K H, LI J F, et al. A novel broadband emission phosphor Ca2KMg2V3O12 for white light emitting diodes[J]. Materials Research Bulletin, 2010, 45(5): 598-602.

[29]DU P, YU J S. Self-activated multicolor emissions in Ca2NaZn2(VO4)3:Eu3+ phosphors for simultaneous warm white light-emitting diodes and safety sign[J]. Dyes and Pigments, 2017, 147: 16-23.

[30]ZHANG Z, TANG W J. Energy transfer and tunable luminescence of Na2(Y, Eu)Mg2V3O12 phosphors for white LED applications[J]. Materials Research Bulletin, 2016, 73: 351-356.

[31]SONG D, GUO C F, ZHAO J, et al. Host sensitized near-infrared emission in Nd3+-Yb3+ co-doped Na2GdMg2V3O12 phosphor[J]. Ceramics International, 2016, 42(11): 12988-12994.

[32]LI K, VAN DEUN R. Eu3+/Sm3+-doped Na2BiMg2(VO4)3 from substitution of Ca2+ by Na+ and Bi3+ in Ca2NaMg2(VO4)3:Color-tunable luminescence via efficient energy transfer from (VO4)3- to Eu3+/Sm3+ ions[J]. Dyes and Pigments, 2018, 155: 258-264.

[33]张文涛, 田学敏, 王玉龙, 等. RCa2Mg2(VO4)3(R=Li, K, Na)荧光粉的制备及发光性能研究[J]. 电子元件与材料, 2015, 34(11): 31-34, 43.

[34]HUIGNARD A, BUISSETTE V, LAURENT G, et al. Synthesis and characterizations of YVO4:Eu colloids[J]. Chemistry of Materials, 2002, 14(5): 2264-2269.

[35]HUIGNARD A, BUISSETTE V, FRANVILLE A C, et al. Emission processes in YVO4:Eu nanoparticles[J]. Journal of Physical Chemistry B, 2003, 107(28): 6754-6759.

[36]KIM D K, KANG W K. Luminescence characteristics of red light emitting YVO4:Eu thin-film phosphors deposited on Si substrate using pulsed laser deposition[J]. Bulletin of the Korean Chemical Society, 2004, 25(12): 1859-1862.

[37]SU X Q, YAN B. In situ chemical co-precipitation synthesis of YVO4:RE(RE=Dy3+, Sm3+, Er3+) phosphors by assembling hybrid precursors[J]. Journal of Non-Crystalline Solids, 2005, 351(43-45): 3542-3546.

[38]DO HAN S, KHATKAR S P, TAXAK V B, et al. Synthesis, luminescence and effect of heat treatment on the properties of Dy3+-doped YVO4 phosphor[J]. Materials Science and Engineering B: Solid State Materials for Advanced Technology, 2006, 129(1/2/3): 126-130.

[39]PARK W J, JUNG M K, YOON D H. Influence of Eu3+, Bi3+ co-doping content on photoluminescence of YVO4 red phosphors induced by ultraviolet excitation[J]. Sensors and Actuators B: Chemical, 2007, 126(1): 324-327.

[40]NATARAJAN V, DHOBALE A R, LU C H. Preparation and characterization of tunable YVO4:Bi3+, Sm3+ phosphors[J]. Journal of Luminescence, 2009, 129(3): 290-293.

[41]NAKAJIMA T, ISOBE M, TSUCHIYA T, et al. Photoluminescence property of vanadates M2V2O7(M: Ba, Sr and Ca)[J]. Optical Materials, 2010, 32(12): 1618-1621.

[42]KIMANI M M, THOMPSON L, SNIDER W, et al. Hydrothermal synthesis and spectroscopic properties of a new glaserite material, K3RE(VO4)2(RE=Sc, Y, Dy, Ho, Er, Yb, Lu, or Tm) with potential lasing and optical properties[J]. Inorganic Chemistry, 2012, 51(24): 13271-13280.

[43]QIN L, WEI D L, HUANG Y L, et al. Ortho-vanadates K3RE(VO4)2(RE=La, Pr, Eu, Gd, Dy, Y) for near UV-converted phosphors[J]. Materials Chemistry and Physics, 2014, 147(3): 1195-1203.

[44]ZHOU J C, YAO Y, CHEN Y, et al. Synthesis, energy transfer mechanism, and tunable emissions of novel Na3La(VO4)2:Re3+(Re3+=Dy3+, Eu3+, and Sm3+) vanadate phosphors for near UV excited white LEDs[J]. Ceramics International, 2020, 46(52): 6276-6283.

[45]CHOI S, MOON Y M, KIM K, et al. Luminescent properties of a novel red-emitting phosphor: Eu3+-activated Ca3Sr3(VO4)4[J]. Journal of Luminescence, 2009, 129(9): 988-990.

[46]TANG Qinxue, QIU Kehui, LI Junfeng, et al. Synthesis and photoluminescence enhancement of Ca3Sr3(VO4)4: Eu3+ red phosphors by Sm3+ doping for white LEDs[J]. Journal of Materials Science-Materials in Electronics, 2017, 28(24): 18686-18696.

[47]TANG Q X, WU Y T, QIU K H, et al. Synthesis and photoluminescence enhancement of Ca3Sr3(VO4)4: Eu3+ red phosphors by co-doping with La3+[J]. Ceramics International, 2018, 44(6): 6192-6200.

[48]WU Y T, QIU K H, TANG Q X, et al. Luminescence enhancement of Al3+ co-doped Ca3Sr3(VO4)4: Eu3+ red-emitting phosphors for white LEDs[J]. Ceramics International, 2018, 44(7): 8190-8195.

[49]NAKAJIMA T, ISOBE M, TSUCHIYA T, et al. Correlation between luminescence quantum efficiency and structural properties of vanadate phosphors with chained, dimerized, and isolated VO4 tetrahedra[J]. Journal of Physical Chemistry C, 2010, 114(11): 5160-5167.

[50]RONDE H, BLASSE G. The nature of the electronic transitions of the vanadate group[J]. Journal of Inorganic and Nuclear Chemistry, 1978, 40(2): 215-219.

[51]SINGH V, SESHADRI M, PATHAK M S, et al. Sm3+ doped calcium orthovanadate Ca3(VO4)2-a spectral study[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 217: 315-321.

[52]ZHOU J C, HUANG F, XU J, et al. Luminescence study of a self-activated and rare earth activated Sr3La(VO4)3 phosphor potentially applicable in W-LEDs[J]. Journal of Materials Chemistry C, 2015, 3(13): 3023-3028.

[53]ZHANG S, LIANG Y, GAO X Y, et al. Hydrothermal synthesis and microstructural, optical properties characterization of YVO4 phosphor powder[J]. Acta Physica Polonica A, 2014, 125(1): 105-110.

[54]崔磊, 张彤, 何华强. 稀土发光材料的发光机理及其应用探究[J]. 冶金管理, 2019(7): 25.

[55]刘东阳. 浅析稀土发光材料的发光机理与应用[J]. 化工管理, 2019(31): 47-48.

[56]王丹红. 浅谈稀土掺杂半导体发光材料[J]. 山东工业技术, 2019(8): 50.

[57]YE S, XIAO F, PAN Y X, et al. Phosphors in phosphor-converted white light-emitting diodes recent advances in materials, techniques and properties[J]. Materials Science and Engineering R: Reports, 2010, 71(1): 1-34.

[58]林莹, 高绍康. 白光LED用荧光粉制备方法的研究与分析[J]. 广东化工, 2020, 47(12): 137-138.

[59]文官富. 白光LED用荧光粉化学组成与制备方法的研究[J]. 集成电路应用, 2019, 36(8): 62-63.

[60]ZHANG Suyin, ZHANG Pengyue, HUANG Yanlin, et al. Self-activated emission and spectral temperature-dependence of Gd8V2O17 phosphor[J]. Journal of Luminescence, 2019, 207: 460-464.

[61]李兆, 吴红强, 史冰垚, 等. 白光LED用GdVO4: Eu3+红色荧光粉的制备及性能[J]. 功能材料, 2020, 51(6): 6186-6189.

[62]阮威威, 刘志国, 刘成振, 等. Eu3+离子激活荧光粉Ca1.9Eu0.1NaMg2-xZnx(VO4)3(0≤x≤1)的发光性质[J]. 发光学报, 2017, 38(8): 995-1002.

[63]GRZYB T, SZCZESZAK A, SHYICHUK A, et al. Comparative studies of structure, spectroscopic properties and intensity parameters of tetragonal rare earth vanadate nanophosphors doped with Eu(III)[J]. Journal of Alloys and Compounds, 2018, 741: 459-472.

[64]WOZNY P, RUNOWSKI M, LIS S. Emission color tuning and phase transition determination based on high-pressure up-conversion luminescence in YVO4:Yb3+, Er3+ nanoparticles[J]. Journal of Luminescence, 2019, 209: 321-327.

[65]SALTARELLI M, MATOS M G, DE FARIA E H, et al. Preparation of YVO4: Eu3+ at low temperature by the hydrolytic sol-gel methodology[J]. Journal of Sol-Gel Science and Technology, 2015, 73(2): 283-292.

[66]DWIVEDI A, RAI E, KUMAR D, et al. Effect of synthesis techniques on the optical properties of Ho3+/Yb3+ co-doped YVO4 phosphor: a comparative study[J]. ACS Omega, 2019, 4(4): 6903-6913.

[67]DALAL J, KHATKAR A, DALAL M, et al. Ba2YV3O11: Eu3+-density functional and experimental analysis of crystal, electronic and optical properties[J]. Journal of Alloys and Compounds, 2020, 821: 153471-153482.

[68]曾慧慧, 姜雯雯, 陈林, 等. 双钙钛矿LaM2VO6: Eu3+ (M=Mg, Ca, Sr, Ba) 荧光纳米材料的制备及发光性能的研究[J]. 南昌大学学报(理科版), 2016, 40(1): 51-55.

[69]YADAV R S, RAI S B. Structural analysis and enhanced photoluminescence via host sensitization from a lanthanide doped BiVO4 nano-phosphor[J]. Journal of Physics and Chemistry of Solids, 2017, 110: 211-217.

[70]JI C Y, HUANG Z, TIAN X Y, et al. Novel red emitting phosphors Mg3Y2Ge3O12: Sm3+ with high color purity and excellent thermal stability used in W-LEDs[J]. Journal of Alloys and Compounds, 2020, 825: 154176-154182.

[71]HUA Yongbin, YU J S. Emission enhancement of bifunctional La2MoO6: Sm3+ nanoparticles by doping Y3+ ions for flexible display and high CRI WLEDs[J]. Journal of Alloys and Compounds, 2020, 820: 12.

[72]HOODA A, KHATKAR A, KUMAR M, et al. Crystal configuration and photoluminescent aspects of red-emitting combustion synthesized novel BaYZn3AlO7: Eu3+ nanophosphor[J]. Journal of Alloys and Compounds, 2020, 823.

[73]GOMEZ TORRES M A, GAUTHIER G H, KACZMAREK A M, et al. Pure and RE3+-doped La7O6(VO4)3 (RE=Eu, Sm): Polymorphism stability and luminescence properties of a new oxyvanadate matrix[J]. Inorganic Chemistry, 2020, 59(9): 5929-5938.

[74]HUSSAIN S K, GO H S, HAN J J, et al. Energy transfer mechanism and tunable emissions from K3La(VO4)2: Dy3+/Eu3+ phosphors and soft-PDMS-based composite films for multifunctional applications[J]. Journal of Alloys and Compounds, 2019, 805: 1271-1281.

[75]刘峥, 郭亚晋, 郭鹏, 等. 溶胶燃烧法制备Sr3-3x/2(VO4)2: xEu3+红色荧光粉及性能研究[J]. 人工晶体学报, 2016, 45(3): 704-710.

[76]DENG Bin, LIU Shihua, ZHOU Chongsong, et al. Eu3+-activated Gd8V2O17: energy transfer, luminescence, and temperature-dependence characteristics[J]. Chemistry A European Journal, 2018, 24(45): 11627-11636.

[77]YANG L X, MI X Y, ZHANG H L, et al. Tunable luminescence and energy transfer properties in Ca2NaMg2V3O12: Ln3+(Dy3+, Sm3+) phosphors[J]. Journal of Alloys and Compounds, 2019, 787: 815-822.

[78]JACOB L A, SISIRA S, THOMAS K, et al. A reddish-orange emitting samarium doped α-Na3Y(VO4)2 nanocrystals for single phased UV excitable white light applications[J]. Journal of Solid State Chemistry, 2019, 280: 251-258.

[79]KOLESNIKOV I E, KALINICHEV A A, KUROCHKIN M A, et al. Structural, luminescence and thermometric properties of nanocrystalline YVO4: Dy3+ temperature and concentration series[J]. Scientific Reports, 2019, 9(1): 2043.

[80]WU Y T, QIU K H, ZHANG W T, et al. Synthesis and luminescence enhancement of Eu3+/Sm3+ co-doped Ca9Bi(VO4)7 phosphor for white-light-emitting diodes[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(3): 3045-3054.

[81]CHEN M, QIU K H, ZHANG P C, et al. Enhancement of NaSrVO4: Dy3+-white-phosphor photoluminescence via La3+ co-doping[J]. Ceramics International, 2019, 45(17): 22547-22552.

[82]DAI M F, QIU K H, ZHANG W T, et al. Synthesis and photoluminescence enhancement of Ca9La(VO4)7: Eu3+ red phosphors by Mg2+ co-doping for white LEDs[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(17): 15052-15059.

[83]WU Y T, CHEN M, QIU K H, et al. Photoluminescence enhancement of Ca3Sr3(VO4)4: Eu3+, Al3+ red-emitting phosphors by charge compensation[J]. Optics and Laser Technology, 2019, 118: 20-27.