彭 丽, 柳冠青, 董 方, 石战胜
(华电电力科学研究院有限公司多相流分离技术研究及应用中心, 浙江杭州310030)
DOI:10.13732/j.issn.1008-5548.2021.02.009
收稿日期: 2020-08-31, 修回日期:2020-09-08,在线出版时间:2020-12-22 16:27。
基金项目:国家重点基础研究发展计划项目,编号:2017YFB0603203。
第一作者简介:彭丽(1988—),女,博士,工程师,研究方向为多相流分离技术研究及应用。E-mail:pengxy0412@foxmail.com。
摘要:采用计算流体力学离散颗粒模型(CFD-DPM),结合响应曲面法,通过系列正交实验,对旋风分离器结构进行优化设计;考察旋风分离器的7个结构参数以及参数间的交互作用对其性能的影响。结果表明:对压降和分离效率影响最显著的结构参数为排气管直径,然后分别是入口高度、入口宽度、旋风分离器长度、排气管插入深度;入口尺寸与排气管直径对压降的影响存在很强的交互作用;旋风分离器长度与排气管插入深度、入口宽度与排气管直径、入口宽度与旋风分离器长度及排气管直径与旋风分离器长度对分离效率的影响存在较强的交互作用,其余因素影响不显著;通过对各结构参数的响应面进行优化,获得该旋风分离器在最小压降和最大分离效率时对应的几何结构参数。
关键词:旋风分离器;响应曲面法;计算流体力学;两相流;模型优化
Abstract:A series of orthographic experiments were designed to optimize and design the cyclone separator geometry by adopting the CFD-DPM( computational fluid dynamics-discrete particle model) and the response surface method. The effect of seven cyclone geometrical parameters and their interactions on the performance were investigated. The results show that the most significant geometrical parameter is the vortex finder diameter. Other factors of the inlet width,inlet height,total cyclone height,and vortex finder length have significant effects on the cyclone performance. In addition,there are strong interactions between the effect of the inlet dimensions and the vortex finder diameter on the pressure drop. There are strong interactions between the effect of the vortex finder length and total cyclone height,inlet width and vortex finder diameter,inlet width and total cyclone height,vortex finder diameter and total cyclone height on the separation efficiency. Finally,a new set of geometrical ratios are obtained to achieve minimum pressure drop maximum separation efficiency by optimization of the response surface of each index.
Keywords:cyclone separator; response surface method; computational fluid dynamics; two-phase flow; model optimization
参考文献:
[1]郑晨雨. 新型旋风分离器的理论分析及实验验证[D]. 武汉: 华中科技大学, 2011.
[2]LI E, WANG Y. A new collection theory of cyclone separators[J]. AICHE J, 1989, 35: 666-669.
[3]STAIRMAND C J. Pressure drops in cyclone separators[J]. Industrial & Engineering Chemistry, 1949, 16(B): 409-411.
[4]MUSCHELKNAUTZ E, TREFZ M. Design and calculation of higher and highest loaded gas cyclones[C]//Proceedings of Second World Congress on Particle Technology, Kyoto, Japan, 1990: 52-71.
[5]CASAl J, MARTINEZ-BENET J M. A better way to calculate cyclone pressure drop[J]. Chemical Engineering, 1983, 90(2): 99-100.
[6]DIRGO J. Relationship between cyclone dimensions and performance[D]. Cambridge: Harvard University, 1988.
[7]KOSAKI Y, CHONO S. Time characteristics of dust collection and particle classification performance of a cyclone[J]. Powder Technology, 2017, 305: 602-608.
[8]SAFIKHANI H, MEHRABIAN P. Numerical study of flow field in new cyclone separators[J]. Advanced Powder Technology: The Internation Journal of the Society of Powder Technology, 2016, 27: 379-387.
[9]HUANG A Y, MAEDA N, SHIBAT D, et al. Influence of a laminarizer at the inlet on the classification performance of a cyclone separator[J]. Separation and Purification Technology, 2017, 174: 408-416.
[10]BRAR L S, ELAYED K. Analysis and optimization of multi-inlet gas cyclones using large eddy simulation and artificial neural network[J]. Powder Technology, 2017, 311: 465-483.
[11]WASILEWSKI M. Analysis of the effect of counter-cone location on cyclone separator efficiency[J]. Separation & Purification Technology, 2017, 179: 236-247.
[12]ELAYED K, LACOR C. Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations[J]. Chemical Engineering Science, 2010, 65(22): 6048-6058.
[13]SGROTT O L, NORILER D, WIGGERS V R, et al. Cyclone optimization by COMPLEX method and CFD simulation[J]. Powder Technology, 2015, 277: 11-21.
[14]李强. 旋风除尘器优化设计及分离特性研究[D]. 长沙: 中南大学, 2008.
[15]曹晴云. CFB锅炉旋风分离器内气固两相流动的数值模拟[D]. 青岛: 中国石油大学(华东), 2008.
[16]KARAGOZ I, KAYA F. CFD investigation of the flow and heat transfer characteristics in a tangential inlet cyclone[J]. International Communications in Heat & Mass Transfer, 2007, 34(9/10): 1119-1126.
[17]赵新学, 金有海. 排尘口直径对旋风分离器壁面磨损影响的数值模拟[J]. 机械工程学报, 2012, 48(6): 142-148.
[18]高翠芝, 孙国刚, 董瑞倩. 排气管对旋风分离器轴向速度分布形态影响的数值模拟[J]. 化工学报, 2010, 61(9): 2409-2416.
[19]GONG G, YANG Z, ZHU S. Numerical investigation of the effect of helix angle and leaf margin on the flow pattern and the performance of the axial flow cyclone separator[J]. Applied Mathematical Modelling, 2012, 36(8): 3916-3930.
[20]GRONALD G, DERKSEN J J. Simulating turbulent swirling flow in a gas cyclone: a comparison of various modeling approaches[J]. Powder Technology, 2011, 205(1/2/3): 160-171.
[21]WINFIELD D, CROSS M, CROFT N, et al. Performance comparison of a single and triple tangential inlet gas separation cyclone: a CFD study[J]. Powder Technology, 2013, 235(2): 520-531.
[22]付烜, 孙国刚, 刘佳, 等. 旋风分离器进口涡旋感生速度场的减阻增效作用[J]. 化工学报, 2011, 62(7): 1927-1932.
[23]熊攀, 鄢曙光, 刘玮寅. 基于响应曲面法的旋风分离器结构优化[J]. 化工学报, 2019, 70(1): 164-170.
[24]吴小林, 熊至宜, 姬忠礼, 等. 旋风分离器旋进涡核的数值模拟[J]. 化工学报, 2007, 58(2): 383-390.
[25]高助威, 王江云, 王娟, 等. 蜗壳式旋风分离器内部流场空间的涡分析[J]. 化工学报, 2017, 68(8): 3006-3013.
[26]CHUAH T G, GIMBUN J, CHOONG T S Y. A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics[J]. Powder Technology, 2006, 162(2): 126-132.
[27]GAO X, CHEN J, FENG J, et al. Numerical investigation of the effects of the central channel on the flow field in an oil-gas cyclone separator[J]. Computers & Fluids, 2014, 92(9): 45-55.
[28]ZHAO B. Modeling pressure drop coefficient for cyclone separators: a support vector machine approach[J]. Chemical Engineering Science, 2009, 64: 4131-4136.
[29]CASAL J, MARTINEZ-BENE J M. A better way to calculate cyclone pressure drop[J]. Chemical Engineering, 1983, 90(2): 99-100.
[30]HOEKSTRA A J, DERKSEN J J, AKKER H. An experimental and numerical study of turbulent swirling flow in gas cyclones[J]. Chemical Engineering Science, 1999, 54(S13/14): 2055-2065.
[31]ZHAO B, SU Y, ZHANG J. Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration[J]. Chemical Engineering Research and Design, 2006, 84: 1158-1165.
[32]MUSCHELKNAUTZ E. Die berechnung von zyklonabscheidern fur gas[J]. Chemie Ingenieur Technik, 1972, 44: 63-71.
[33]王晶. 基于响应曲面法的多响应稳健性参数优化方法研究[D]. 天津: 天津大学, 2009.
[34]HOFFMANN A C, STAIN L E. Gas cyclones and swirl tubes: principles, design and operation[J]. Applied Mechanics Reviews, 2007, 56(2): B28.