孙思敏1,2, 郭 帅1, 王小芳1,2, 朱治平1,2
(1. 中国科学院工程热物理研究所, 北京100190;2. 中国科学院大学工程科学学院, 北京100049)
DOI:10.13732/j.issn.1008-5548.2021.02.008
收稿日期: 2020-09-04, 修回日期:2020-09-27,在线出版时间:2020-12-22 16:22。
基金项目:中国科学院科技成果转移转化重点专项,编号:Y929030401。
第一作者简介:孙思敏(1997—),女,硕士研究生,研究方向为循环流化床煤气化。E-mail: sunsimin@iet.cn。
通信作者简介:郭帅(1989—),男,博士,助理研究员,研究方向为煤气化。E-mail: guoshuai@iet.cn。
摘要:设计单因素变量试验,考察双排料管下排气式旋风分离器的关键运行参数分离器进口气体速度vc、入口固气质量比ω、喷嘴内环气体速度vb对分离器进口-排料管压力损失ΔP1、ΔP2,分离器进口-排气管压力损失ΔP3,分离效率η,漏气率δ的影响。结果表明:vc是影响分离器压力分布的主要因素,随着vc由14.4 m/s增大到25.4 m/s,ΔP3从0.70 k Pa增大至2.12 k Pa,η从85.4%增大至89.5%,δ逐渐增大;随着ω的增加,ΔP1、ΔP2显著减小,ω为0.08是ΔP1、ΔP2降低幅度减小的转折点;当vb小于14.0 m/s时,随着vb增大,δ大幅度减小;当vb过高时,严重影响系统的流场分布,δ变为负值,同时η减小至85.9%。
关键词:双排料管;下排气式旋风分离器;压力损失;分离效率;漏气率
Abstract:This paper designed a single factor variable test on performance of uniflow cyclone. The effects of the key operating parameters of the uniflow cyclone with two-particle outlets,the separator inlet air velocity vc,the inlet solid-gas mass ratio ω,the nozzle inlet velocity vbon cyclone inlet-particle outlets ΔP1,ΔP2,cyclone inlet-gas outlet ΔP3,separation efficiency η and air leak rate δ were investigated. The results show that vcis the main factor affecting the pressure distribution of the separator. As vc increases from 14. 4 m/s to 25. 4 m/s,the cyclone inlet-gas outlet ΔP3 increases from 0. 70 k Pa to 2. 12 k Pa,η increases from85. 4% to 89. 5%,and δ increases gradually. As ω increases,ΔP1 and ΔP2 decrease significantly,ΔP1 and ΔP2 descent slope begin to slow when ω is 0. 08. When v is less than 14. 0 m/s,as v increases,δ decreases greatly. When v is too high,which seriously affects the flow of the system,δ becomes a negative value,and η drops to 85. 9%. This study is expected to provide some reference for the design of circulating fluidized bed staged gasification equipment.
Keywords:two-particle outlets; separator with downward gas-exit; pressure loss; separation efficiency; air leak rate
参考文献:
[1]朱治平, 王小芳, 那永洁, 等. 预热式分级气化方法及装置:中国:107880938A[P]. 2018-04-06.
[2]岑可法. 循环流化床锅炉理论设计与运行 [M]. 北京:中国电力出版社, 1998.
[3]TAN F, KARAGOZ I, AVCI A. Effects of geometrical parameters on the pressure drop for a modified cyclone separator[J]. Chemical Engineering and Technology, 2016, 39(3): 576-581.
[4]PILLEI M, KOFLER T, WIERSCHEM A, et al. Intensification of uniflow cyclone performance at low loading[J]. Powder Technology, 2020, 360: 522-533.
[5]WEI Q, SUN G G, JIAO Y N, et al. The effect of inlet shape on separation performance and flow-field characteristics in a gas-solid cyclone separator[J/ON]. [2020-08-25]Asia-Pacific Journal of Chemical Engineering, 2019, 14(5). https://doi.org/10.1002/apj.2339
[6]WEI Q, SUN G G, YANG J X. A model for prediction of maximum-efficiency inlet velocity in a gas-solid cyclone separator[J]. Chemical Engineering Science, 2019, 204(2019): 287-297.
[7]王文. 下排气旋风分离器气固两相流动和优化的研究[D]. 重庆: 重庆大学, 2007.
[8]陈汉平, 黄琳, 林志杰, 等. 循环床锅炉下排气旋风分离器阻力特性的研究[J]. 华中理工大学学报, 1995(8): 28-32.
[9]奚金祥, 余战英, 蒋宏利, 等. 下排气旋风分离器分离机理的实验研究[J]. 西安交通大学学报, 2000, 34(5): 28-31, 41.
[10]刘德昌, 陈汉平, 吴正舜, 等. 下排气旋风分离器循环流化床锅炉的研究与开发[J]. 煤炭加工与综合利用, 2000(3): 47-49.
[11]杨仲卿, 唐强, 张力. 下排气旋风分离器结构优化研究[J]. 环境工程学报, 2011, 5(1): 166-170.
[12]余战英, 奚金祥, 徐通模, 等. 下排气旋风分离器流场的测定及数值模拟[J]. 动力工程, 2002(5): 1941-1944.
[13]YANG Z, TANG Q, ZHANG L. Study on structural optimization of cyclone separator with downward exhaust gas[J]. Chinese Journal of Environmental Engineering, 2011, 5(1): 166-170.
[14]王磊, 杨群峰. 下排气旋风分离器的结构改造及效果分析[J]. 山东工业技术, 2014(12): 19-20.
[15]OH J, CHOI S, KIM J. Numerical simulation of an internal flow field in a uniflow cyclone separator[J]. Powder Technology, 2015, 274: 135-145.
[16]冷碧霞, 吴学安. 新型扩散式下排气气固分离器的实验研究[J]. 动力工程, 2003(1): 2232-2235.
[17]付晓庆, 孙国刚, 戚金洲, 等. 一种新型旁路式直流旋风分离器的性能研究[J]. 化工装备技术, 2013, 34(1): 8-11.
[18]CHEN D M, RAN J Y, NIU J T, et al. Numerical study on separation performance of cyclone flue used in grate waste incinerator[J]. Processes, 2019, 7(12), 866.
[19]SU Y X, MAO Y R. Experimental study on the gas-solid suspension flow in a square cyclone separator[J]. Chemical Engineering Journal, 2006, 121(1): 51-58.
[20]岑可法, 倪明江, 骆仲泱, 等. 方形下排气热交换分离器:中国:2219429[P]. 1996-02-07.
[21]黄盛珠, 马春元, 吴少华. 下排气旋风分离器的改进设计[J]. 动力工程, 2004, 24(5): 736-738.
[22]郝晓文, 王磊, 赵强. 下排气旋风分离器流场分析与结构优化[J]. 电站系统工程, 2011, 27(3): 15-16,19.
[23]张立强, 马春元, 宋占龙, 等. 浓缩型入口下排气旋风分离器流场和性能的数值计算[J]. 环境工程, 2007, 25(6): 43-46.
[24]霍夫曼A C, 斯坦因L E, 彭维明, 等. 旋风分离器: 原理、设计和工程应用[M]. 北京: 化学工业出版社, 2004.
[25]CORTÉS C, GIL A. Modeling the gas and particle flow inside cyclone separators[J]. Progress in Energy and Combustion Science, 2007, 33(5): 409-452.