ISSN 1008-5548

CN 37-1316/TU

2021年27卷  第2期
<返回第2期

基于Fluent的3D打印机成型腔内气固两相流动特性 

Gas-solid two-phase flow characteristics in molding cavity of 3D printer based on Fluent

蒲志新, 武志龙, 贾加亮, 张齐鲁

(辽宁工程技术大学机械工程学院,辽宁阜新123000)


DOI:10.13732/j.issn.1008-5548.2021.02.004

收稿日期: 2020-09-04, 修回日期:2020-10-05,在线出版时间:2020-12-26 15:33。

第一作者简介:蒲志新(1973—),男,硕士,副教授,硕士生导师,研究方向为先进制造系统与应用。E-mail:puzhixin@126.com。

通信作者简介:武志龙(1994—),男,硕士研究生,研究方向为先进制造系统与应用。E-mail:2397968550@qq.com。


摘要:基于计算流体力学(computational fluid dynamics,CFD)方法对3D打印设备成型腔内流道气固两相流流动特性进行数值模拟,结合一种小型3D打印机建立物理模型,应用固体颗粒轨迹追踪的方法分析该3D打印设备成型腔内部产生大量烟雾的原因,对目前实际生产过程中产生问题进行解释;通过改变吸气孔高度、吹吸气孔距加工平台高度,定性分析其对腔体内产生烟雾量的影响。结果表明:实际加工过程中腔体内部产生大量烟雾的原因是层流气体发散严重,使箱体内部产生涡流现象,增加固体小颗粒在成型腔内部滞留时间;通过吹吸罩除尘理论对该型3D打印设备吸气孔高度进行理论计算,当吸气孔高度为32 mm,吹吸气孔距加工上表面高度为32~37 mm时烟雾量可以达到最小。

关键词:计算流体力学;3D打印机;轨迹追踪;吹吸罩

Abstract:The flow characteristics in molding cavity of 3D printer equipment were numerically simulated based on computational fluid dynamics( CFD). Physical model was built with a small 3D printer. The reason for the large amount of smoke in the forming chamber of the 3D printing equipment was analyzed using the method of solid particle track tracing,and the problems were explained in actual production process. Regularities were qualitatively analyzed which impacted by changing the height of the blow hole and the distance between the blowing and suction holes in the chamber. The results show that the serious laminar gas diffusing is the reason for the large amount of smoke in the cavity. Eddy current phenomenon is produced inside and the retention time of small solid particles in the cavity is increased. The amounts of smoke in the chamber can be minimized when the height of the blow hole is 22 mm and the distance is 32 ~ 37 mm between the blow hole and the upper surface.

Keywords:computational fluid dynamics; 3D printer; trajectory tracking; blowing and suction hood


参考文献:

[1]关彦齐, 王芳芳. 增材制造(3D打印)铸造的发展与应用[J]. 科技创新与应用, 2020(21): 110-111.

[2]黎志勇, 杨斌, 王鹏程, 等. 金属3D打印技术研究现状及其趋势[J]. 新技术新工艺, 2017(4): 25-28.

[3]段宣政, 赵菲, 王淑丹, 等. 国内外金属3D打印材料现状与发展[J]. 焊接, 2020(2): 49-55.

[4]俞春红. 高分子3D打印材料和打印工艺的探讨[J]. 科技创新与应用, 2020(26): 104-105.

[5]刘卫兵, 钱素娟, 刘志东. 3D打印用高分子材料及打印成型工艺参数优化研究进展[J]. 合成树脂及塑料, 2020, 37(2): 85-89.

[6]甘鑫鹏, 王金志, 费国霞, 等. 选择性激光烧结3D打印粉体材料研究进展[J]. 化工新型材料, 2020, 48(8): 27-31, 41.

[7]李海峰, 吴冀川, 刘建波, 等. 有限元网格剖分与网格质量判定指标[J]. 中国机械工程, 2012, 23(3): 368-377.

[8]DONG Z, ZHANG L, WANG S, et al. Direct visualization of dynamic atomistic processes of Cu2O crystal growth through gas-solid reaction[J]. Nano Energy, 2020, 70:104527.

[9]苏高, 周国义, 杜飞. 考虑气固单向耦合作用的燃气轮机流场数值模拟[J]. 热力透平, 2013, 42(1): 51-54.

[10]杨泽林, 张世富, 王铭, 等. 基于FLUENT的梭阀稳态流场数值模拟[J]. 液压气动与密封, 2017, 37(9): 29-32.

[11]MIRZAEI F, MIRZAEI F, KASHI E. Turbulence model selection for heavy gases dispersion modeling in topographically complex area[J]. Journal of Applied Fluid Mechanics, 2019, 12(6): 1745-1755.

[12]贺素艳, 王英敏, 李云飞. 一种吹吸式排风罩的流场测试及数值模拟[J]. 上海交通大学学报, 2002(10): 1492-1495, 1499.

[13]王志丽. 基于数值模拟的槽边射流吹吸罩控制面与控制风速研究[J]. 中国安全生产科学技术, 2017, 13(5): 170-174.

[14]丁建旭, 杜群贵, 吴雨蒙, 等. 铝粉分散过程中粒径效应的三维数值研究[J]. 中国安全生产科学技术, 2019, 15(3): 37-43.