ISSN 1008-5548

CN 37-1316/TU

2021年27卷  第2期
<返回第2期

碳气凝胶超细粉体的可控制备技术

Controllable preparation techniche of carbon aerogel ultrafine powder

于照亮, 彭文联, 刘清海, 张 彤, 代晓东

(军事科学院防化研究院, 北京102205)


DOI:10.13732/j.issn.1008-5548.2021.02.003

收稿日期: 2020-09-01, 修回日期:2020-09-28,在线出版时间:2020-12-22 16:31。

基金项目:国防预研基金项目,编号:30110020502; 武器装备军内科研项目,编号:JK20202A060503。

第一作者简介:于照亮(1995—),男,硕士研究生,研究方向为军用功能材料。E-mail:yuzhaoliang163@163.com。

通信作者简介:代晓东(1974—),男,博士,研究员,研究方向为军用功能材料。E-mail:dxd010@163.com。


摘要:基于球磨技术建立碳气凝胶超细粉体制备方法,系统地研究制备工艺中球磨时间、球料比、助磨剂等制备条件对制备产物的影响,揭示制备参数对碳气凝胶粉体特性的影响规律。结果表明:延长球磨时间有利于降低大粒子在产物中比例,但大于4 h的球磨时间对小粒子影响不大,存在“粉碎极限”效应;随着球料比的增加,中位径Dv(50)先降低再升高,球料质量比为50∶1时,得到的Dv(50)最小值为2.58μm;添加助磨剂会增大产物的粒径,且不同的助磨剂增幅不同。

关键词:碳气凝胶;超细粉体;球磨工艺;可控制备

Abstract:Carbon aerogel ultrafine powders were prepared by ball-milling method. The effects of preparation parameters such as ball-milling time,quantity ratio of ball-sample and addition of grinding aid,on the properties of products were systematically investigated. The results show that the proportion of large particles in particle size distribution of products decrease with increasing in ball-milling time,but the ball grinding time above 4 h has little influence on small particles,and that Dv( 50) in particle size distribution of products first decrease and then increase with increasing in mass ratio of ball-sample,the lowest Dv( 50) value is 2. 58 μm when the mass ratio is 50∶1,and that the particle size of products increase with the addition of the solutions of grinding aids and the influence of different grinding aids is different.

Keywords:carbon aerogels; ultrafine powder; ball-milling technology; controllable preparation


参考文献:

[1]HU Y, ZHUO H, CHEN Z, et al. Super elastic carbon aerogel with ultrahigh and wide-range linear sensitivity[J]. ACS Applied Materials & Interfaces, 2018, 10(47): 40641-40650.

[2]SUN J, LEI E, MA C, et al. Fabrication of three-dimensional microtubular kapok fiber carbon aerogel/RuO2 composites for supercapacitors[J]. Electrochimica Acta, 2019, 300: 225-234.

[3]ZHAO H, HU Y J, CHEN Z H, et al. Cellulose carbon aerogel/PPy composites for high-performance supercapacitor[J]. Carbohydrate Polymers, 2019, 215: 322-329.

[4]MIRA B, KATHRIN P, MARIA-MAGDALENA T, et al. Biomass-derived nitrogen-doped carbon aerogel counter electrodes for dye sensitized solar cells[J]. Materials, 2018, 11(7): 1171-1182.

[5]KOVALENKO G A, PERMINOVA L V, KRASNIKOV D V, et al. Macroporous carbon aerogel as a novel adsorbent for immobilized enzymes and a support for the lipase-active heterogeneous biocatalysts for conversion of triglycerides and fatty acids[J]. Journal of Porous Materials, 2017, 25(4): 1017-1026.

[6]WU J, ZENG L, HUANG X, et al. Mechanically robust and shape-memory hybrid aerogels for super-insulating applications[J]. Journal of Materials Chemistry A, 2017, 5(29): 15048-15055.

[7]杨杰, 李树奎, 王富耻. 气凝胶复合材料抗弹性能的研究[J]. 北京理工大学学报, 2011, 31(7): 867-871.

[8]WU X H, LYU J, HONG G, et al. Inner surface functionalized graphene aerogel microgranules with static microwave attenuation and dynamic infrared shielding[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2018, 34(30): 9004-9014.

[9]张恩爽, 吕通, 刘韬, 等. 石墨烯掺杂碳气凝胶粉体的制备及电磁干扰性能[J]. 高等学校化学学报, 2019, 40(3): 567-575.

[10]常颖, 郭宇晴, 刘英莉, 等. 基于离心方式的超细粉体压缩技术[J]. 中国粉体技术, 2017, 23(5): 35-42, 48.

[11]邓小勇, 丁凯, 王燕娜, 等. 聚合物超细粉体制备及改性砂浆性能研究[J]. 施工技术, 2015, 44(3): 85-88.

[12]王锦, 李东红. 两段焙烧法制备亚微米级氧化铝粉体[J]. 中国粉体技术, 2014, 20(4): 24-27.

[13]闫红梅, 王朝阳, 唐永建, 等. 制备条件对气凝胶粉末粒径的影响[J]. 强激光与粒子束, 2006(6): 1027-1030.

[14]袁磊, 王朝阳, 付志兵, 等. MnO2/碳气凝胶粉末复合电极材料制备与性能研究[J]. 原子能科学技术, 2010, 44(7): 864-868.

[15]张建伟, 闫宇航, 沙新力, 等. 撞击流强化混合特性及用于制备超细粉体研究进展[J]. 化工进展, 2020, 39(3): 824-833.

[16]龙晓阳, 吴隽. 氮化硼纳米管制备技术研究进展[J]. 化工新型材料, 2018, 46(4): 16-19.

[17]黄冬梅, 王信群, 杨剑. 球磨时间对BC干粉灭火剂形态特征的影响[J]. 中国粉体技术, 2014, 20(1): 1-6.