曹 雪, 滕元成, 王山林, 王 文
(西南科技大学 材料科学与工程学院, 四川 绵阳 621000)
DOI:10.13732/j.issn.1008-5548.2021.03.012
收稿日期: 2020-08-01,修回日期:2020-12-15,在线出版时间:2021-04-07 13:01。
基金项目:国家自然科学基金项目,编号:11775182。
第一作者简介:曹雪(1994—),女,硕士研究生,研究方向为功能陶瓷。E-mail:2805966857@qq.com。
通信作者简介:滕元成(1967—),男,硕士,教授,硕士生导师,研究方向为功能陶瓷。E-mail:tyc239@163.com。
摘要:为了固化高放射性石墨,采用石墨粉模拟放射性核素14C,以ZnO、Al2O3、SiO2为原料,制备ZnO-Al2O3-SiO2(ZAS)玻璃作为烧结助剂;以ZAS玻璃粉、Si、石墨粉为原料高温煅烧合成SiC-ZAS复相粉体颗粒的过程模拟固化高放射性石墨。借助高温光学显微镜、X射线衍射仪、电感耦合等离子发射光谱仪等分析仪器,研究ZAS玻璃的熔融特性与化学稳定性,以及SiC-ZAS复相粉体的合成。结果表明:配方为3.9Zn O·Al2O3·5.1SiO2的ZAS玻璃的流动温度为1 378℃,在pH为5~9的水溶液中浸泡28 d时,Si、Zn、Al的归一化浸出率分别为10-3、10-5、10-6g/(m2·d)数量级;合成SiC-ZAS复相粉体条件为1 350℃真空煅烧3 h,硅碳物质的量之比为1.075。
关键词:SiC·ZAS;复相粉体;模拟;固化;高放射性石墨
Abstract:To solidify high-radioactive graphite,using graphite powder to simulate radionuclide 14C.Using ZnO,Al2O3 and SiO2 as raw materials,ZAS glass was prepared as sintering assistant.Using ZnO-Al2O3-SiO2 glass powder,Si and graphite powder as raw materials,the process of synthesis SiC-ZAS composite powder particles was simulated to solidify high radioactive graphite.By virtue of high-temperature microscope,X-ray diffraction,inductive coupled plasma emission spectrometer and other analytical instrument,the melting characteristics and chemical stability of ZAS glass as well as the synthesis of SiC-ZAS composite powders were studied.The results show that the flow temperature of the ZAS glass with a formula of 3.9 ZnO·1Al2O3·5.1SiO2 is 1 378℃,and the normalized leaching rates of Si,Zn and Al are 10-3,10-5 and 10-6g/(m2·d),respectively,when the ZAS glass immersed in an aqueous solution with a pH of 5~9 for 28 days.The synthesis of SiC-ZAS composite powder is calcined at 1 350℃ for 3h in vacuum and the ratio of the amount of silicon to carbonis 1.075.
Keywords:SiC-ZAS; composite powder; simulate; immobilize; high-radioactive graphite;
参考文献(References):
[1]LI JF, DUNZIK-GOUGA M L, WANG J L. Recent advances in the treatment of irradiated graphite: a review[J]. Annals of Nuclear Energy, 2017, 110: 140-147.
[2]赵伟. 榍石固化处理模拟四价锕系核素的研究[D]. 绵阳: 西南科技大学, 2010.
[3]姜子英, 张燕齐, 温保印, 等. 反应堆石墨废物最小化研究进展[J]. 核安全, 2015, 14(1): 78-84.
[4]郑博文, 李晓海, 周连泉, 等. 放射性废石墨的处理处置现状[J]. 辐射防护通讯, 2012, 32(3): 32-37.
[5]耿安东, 朱永昌, 崔竹, 等. 高放废料固化用硼硅酸盐材料研究进展[J]. 玻璃, 2018, 45(2): 5-10.
[6]何宁宁, 侯晨曦, 舒小艳, 等. 自蔓延高温合成技术在高放废物处理领域的应用进展[J]. 材料导报A: 综述篇, 2018, 32(3): 510-514.
[7]KONOVALOV E, STARKOV O V, MYSHKOVSKII M P, et.al. Reprocessing of highly active reactor graphite into stable carbide-oxide materials by self-propagating high-temperature synthesis[J]. Atomic Energy, 1998, 84(3): 183-185.
[8]马静梅, 宋健, 安娜. 不同类型碳化硅制备的BAS/SiC复合材料组织及力学性能的研究[J]. 吉林师范大学学报(自然科学版), 2015, 36(4): 25-28.
[9]刘荣正, 刘马林, 邵友林, 等. 碳化硅材料在核燃料元件中的应用[J]. 材料导报A: 综述篇, 2015, 29(1): 1-5.
[10]RIBEIRO S, GNOVA L A, RIBEIRO G C, et al. Effect of heating rate on the shrinkage and microstructure of liquid phase sintered SiC ceramics[J]. Ceramics International, 2016, 42(15): 17398-17404.
[11]AYRAL R M, ROUESSAC F, MASSONI N. Combustion synthesis of silicon carbide assisted by a magnesium plus polytetrafluoroethylene mixture[J]. Materials Research Bulletin, 2009, 44(11): 2134-2138.
[12]BOSC-ROUESSAC F, MARIN-AYRALM R, HAIDOUX A, et al. Combustion synthesis of ceramic matrices for immobilization of 14C[J]. Journal of Alloys and Compounds, 2007, 466(1/2): 551-557.
[13]武卫兵, 靳正国. 碳化硅陶瓷的液相烧结及其研究进展[J]. 山东陶瓷, 2002, 25(1): 14-16.
[14]SHE J H, UENO K. Effect of additive content on liquid-phase sintering on silicon carbide ceramics[J]. Materials Research Bulletin, 1999, 34(10/11): 1629-1636.
[15]OMORI M, TAKEI H. Pressureless sintering of SiC[J]. Journal of the American Ceramic Society, 1982, 65(6): 12-15.
[16]TENG Y C, WANG Q, WU L, et al. Effect of reactivity of silicon and magnesium on the preparation of SiC-MgAl2O4 composites for immobilizing graphite[J]. Ceramics International, 2019, 45(8): 10203-102210.
[17]WANG Q, TENG Y C, WU L, et al. Synthesis and characterization of SiC based composite materials for immobilizing radioactive graphite[J]. Journal of Nuclear Materials, 2018, 504: 94-100.
[18]赵岭岭, 滕元成, 刘兵, 等. SiC固化模拟放射性石墨的研究[J]. 中国陶瓷, 2014, 50(1): 13-17.
[19]秦晨, 闵嗣桂. ZnO-Al2O3-SiO2系统微晶玻璃的研究[J]. 硅酸盐学报, 1966, 5(1): 26-31.
[20]美国材料试验协会. ASTM C1285—2002, 确定核废物和混合废弃玻璃及多相玻璃陶瓷耐化学性能的标准试验方法: 产品一致性试验(PCT)[S]. 康舍霍肯: 美国材料试验协会委员会, 2002.