唐安宇1, 何曼丽2, 陈九玉1, 周鑫浩1, 王丙佳1, 王俊议1, 杨 毅1
(1. 南京理工大学 环境与生物工程学院; 江苏省化工污染控制与资源化重点实验室, 江苏 南京 210094;2. 陆军工程大学 基础部, 江苏 南京 210001)
DOI:10.13732/j.issn.1008-5548.2021.03.011
收稿日期: 2020-12-09,修回日期:2021-01-12,在线出版时间:2021-04-07 14:05。
基金项目:国家自然科学基金项目,编号:11805101;江苏省环保科研课题,编号:JSZCD 2018-044;江苏省凹土资源利用重点实验室开放课题,编号:HPK202001。
第一作者简介:唐安宇(1996—),男,硕士研究生,研究方向为环境功能材料,E-mail:597160564@qq.com。
通信作者简介:杨毅(1973—),男,博士,研究员,博士生导师,研究方向为环境功能材料,E-mail: yangyi@njust.edu.cn。
摘要:为了提高材料对放射性碘的吸附性能,在制备立方体和十二面体铜基均苯三甲酸(Cu-BTC)材料的基础上,通过调节煅烧气氛环境,获得更为疏松多孔的氧化亚铜-氧化铜(Cu2O-CuO)复合材料。通过扫描电子显微镜、X射线衍射、红外光谱等手段对材料进行表征,发现所得材料分别为立方体和十二面体的Cu2O-CuO,并依旧保留大部分Cu-BTC结构骨架。对碘离子的吸附实验结果显示,立方体和十二面体的Cu2O-CuO饱和吸附容量分别能够达到49.72、91.91 mg/g。热力学和动力学吸附研究结果表明,2种形貌的Cu2O-CuO均属于以化学吸附为主,符合Langmuir吸附模型的单分子层吸附。制备的Cu2O-CuO能够在吸附时与碘离子生成CuI。吸附剂在弱酸条件吸附性能更强,干扰离子中,弱酸根离子会阻碍材料对碘离子的吸附,而强酸根离子则能一定程度上促进吸附,提升吸附剂吸附性能。
关键词:金属有机骨架化合物;铜基均苯三甲酸;氧化亚铜-氧化铜;放射性碘吸附
Abstract:In order to improve the adsorption performance of the material for radioactive iodine,by adjusting the calcination atmosphere,a more porous Cu2O-CuO composite material was obtained on the basis of preparing cubic and dodecahedral Cu-BTC materials. Through SEM,XRD and FTIR characterization,we found the obtained materials are cubic and dodecahedral Cu2O-Cu O,respectively,and still retain most of the Cu-BTC structure framework. The results of adsorption experiments on iodide ions( I-) show that,the saturated adsorption capacities of the two morphologies( cube and dodecahedron) Cu2O-CuO can reach respectively 49. 72 mg/g and 91. 91 mg/g. Thermodynamic and kinetic adsorption research results show that the two morphologies of Cu2O-CuO belong to monolayer adsorption based on chemical adsorption and conform to the Langmuir adsorption model. The Cu2O-CuO adsorbent can generate CuI during adsorption. The adsorbent has stronger adsorption performance under weak acid conditions. Among the interfering ions,weak acid ions will hinder the material's adsorption of iodide ions,while strong acid ions can promote adsorption to a certain extent and improve the adsorption performance of the adsorbent.
Keywords:Metal organic framework compound; Cu-BTC; Cu2O-CuO; radioactive iodine adsorption
参考文献(References):
[1]SHI H, SONG H. Applying the real option approach on nuclear power project decision making[J]. Energy Procedia, 2013, 39: 193-198.
[2]IBRAHIM J K. Nuclear power plant development[J]. Nuclear Reactor Technology Development and Utilization, 2020, 12(3): 363-405.
[3]高琦, 林晗, 管映雪,等. 日本水稻核放射性污染现状及去污措施综述[J]. 农业工程学报, 2020, 36(1): 221-227.
[4]WANG P, XU Q, LI Z, et al. Exceptional iodine capture in 2D covalent organic frameworks[J]. Advanced Materials, 2018, 30: 1-7.
[5]史建君. 放射性核素对生态环境的影响[J].核农学报, 2011, 25(2) 397-403.
[6]CHOI M H, JEONG S W, SHIM H E, et al. Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial-containing radiation-resistant bacterium, deinococcus radiodurans[J]. Chemical Communications, 2017, 53: 3937.
[7]李志超. 反渗透技术处理模拟含碘、铯、锶放射性废水的研究[D]. 天津: 天津大学, 2018.
[8]YAN C, MU T. Investigation of ionic liquids for efficient removal and reliable storage of radioactive iodine: a halogen-bonding case[J]. Physical Chemistry Chemical Physics, 2014, 16(11): 5071-5076.
[9]MAO P, QI L, LIU X, et al. Synthesis of Cu/Cu2O hydrides for enhanced removal of iodide from water[J]. Journal of Hazardous Materials, 2017, 328:21-28.
[10]MASYKUR A, WIBOWO A H, SALSABILA H. Preparation of Cu(II) ion-imprinted based on carboxymethyl chitosan and application as adsorbent of Cu(II) ion[J]. IOP Conference Series: Materials Science and Engineering, 2019, 509(1): 012001.
[11]CHOI S, DRESE J, JONES C. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources[J]. Chemsuschem, 2010, 2(9): 796-854.
[12]王俊议, 陈九玉, 王鹏, 等. 银负载改性焙烧态水滑石及其碘离子吸附性能[J]. 中国粉体技术, 2020, 26(4): 21-27.
[13]GUO Y, ZHU Z, QIU Y, et al. Synthesis of mesoporous Cu/Mg/Fe layered double hydroxide and its adsorption performance for arsenate in aqueous solutions[J]. Journal of Environmental Sciences, 2013, 25(5): 944-953.
[14]FENG T, WANG Y, WU Y, et al. A feasible linker transformation strategy towards the formation of Cu2O nanoparticles for immobilization in hierarchical CuBTC for adsorption desulfurization[J]. Journal of Materials Chemistry A, 2020, 8(17): 8678-8683.
[15]NOBAR, NAJAFI S. Cu-BTC synthesis, characterization and preparation for adsorption studies[J]. Materials Chemistry and Physics, 2018, 213: 343-351.
[16]WANG Q M, SHEN D, BÜLOW M, et al. Metallo-organic molecular sieve for gas separation and purification[J]. Microporous and Mesoporous Materials, 2002, 55(2): 217-230.
[17]MAACK B, NILIUS N. Morphological and kinetic insights into Cu2O-CuO oxidation[J]. Physica Status Solidi(B), 2020, 257: 1-8.
[18]HU L, HUANG Y, ZHANG F, et al. CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life[J]. Nanoscale, 2013, 5(10): 4186-4190.
[19]LIANG G, HU Z, WANG Z, et al. Effective removal of carbamazepine and diclofenac by CuO/Cu2O/Cu-biochar composite with different adsorption mechanisms[J]. Environmental Science and Pollution Research, 2020, 27: 45435-45446.
[20]SCHLICHTE K, KRATZKE T, KASKEL S. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2[J]. Microporous & Mesoporous Materials, 2004, 73(1/2): 81-88.
[21]KAR A K, SRIVASTAVA R. Selective synthesis of Cu-Cu2O/C and CuO-Cu2O/C catalysts for Pd-free C-C, C-N coupling and oxidation reactions[J]. Inorganic Chemistry Frontiers, 2019, 6(2): 576-589.
[22]MUSTO P, LA M P, PANNICO M, et al. Molecular interactions of CO2 with the CuBTC metal organic framework: an FTIR study based on two-dimensional correlation spectroscopy[J]. Journal of Molecular Structure, 2018, 1166:326-333.
[23]MUSHTAQ A, MUKHTAR H B, SHARIFF A M. FTIR study of enhanced polymeric blend membrane with amines[J]. Research Journal of Applied Sciences, Engineering and Technology, 2014, 7(9): 1811-1820.
[24]CELIK E, PARK H, CHOI H, et al. Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment[J]. Water Research, 2011, 45(1): 274-282.
[25]RAMBABU K, BHARATH G, MONASH P, et al. Effective treatment of dye polluted wastewater using nanoporous CaCl2 modified polyethersulfone membrane[J]. Process Safety and Environmental Protection, 2019, 45: 42635-42645.
[26]ABDELHAMEED R M, ABDEL-GAWAD H, ELSHAHAT M, et al. Cu-BTC@cotton composite: design and removal of ethion insecticide from water[J]. RSC Advances, 2016, 6: 43324-43333.
[27]ABDELHAMEED R M, EMAM H E, ROCHA J, et al. Cu-BTC metal-organic framework natural fabric composites for fuel purification[J]. Fuel Processing Technology, 2017, 159: 306-312.