张 宁1, 冯靖书2, 杨倩倩1, 闫 涛1
(1. 济南大学 水利与环境学院, 山东 济南 250022;2. 山东格莱美环保科技有限公司, 山东 济南 250117)
DOI:10.13732/j.issn.1008-5548.2021.03.010
收稿日期: 2020-12-24,修回日期:2021-01-25,在线出版时间:2021-04-07 14:03。
基金项目:山东省自然科学基金,编号:ZR2020MB091。
第一作者简介:张宁(1994—),男,硕士研究生,研究方向为光催化分解水产氢。E-mail:zhangningrr@163.com。
通信作者简介:闫涛(1980—),男,博士,副教授,硕士生导师,研究方向为环境功能材料。E-mail: yantujn@163.com。
摘要:通过溶剂热法将Co9S8纳米粒子负载在一维CdS纳米棒上,形成一维异质结复合材料用于光催化产氢。结合X射线衍射、扫描电子显微镜、紫外-可见漫反射等表征了材料的组成、微观结构、光学性能等,并进行光催化产氢性能测试。结果表明,当Co9S8的负载量为CdS质量的10%时复合材料具有最佳的产氢速率18.72 mmol·g-1·h-1,约为CdS产氢速率的16倍。此外复合材料还表现出良好的循环稳定性,在连续12 h光催化产氢测试中,产氢性能没有明显下降。探讨了材料的电荷转移机制,从瞬态光电流、交流阻抗、光致发光等表征结果可知,一维异质结CdS-Co9S8可以显著提高光生电子-空穴对的迁移分离效率,从而显著提高材料光催化产氢性能。
关键词:硫化镉;八硫化九钴;一维材料;光催化产氢
Abstract: Co9S8 nanoparticles were loaded on one-dimensional CdS nanorods through solvothermal method to form a one-dimensional heterojunction structure for photocatalytic hydrogen production. Combining the characterization of XRD, SEM, and UV-Vis DRS, the composition, microstructure, and optical properties of the material were studied.Then the photocatalytic properties were tested. The results showed that when the loading of Co9S8 was 10% of the mass of CdS, the composite had the best hydrogen production rate of 18.72 mmol·g-1·h-1, which was about 16 times that of CdS.In addition, the composite also showed good cycle stability, and the performance did not decrease significantly in the continuous 12-hour photocatalytic hydrogen production test. Finally, the charge transfer mechanism of the material was discussed. Based on the analysis of the characterization results of transient photocurrent, EIS and PL, it was concluded that the composite CdS-Co9S8 one-dimensional heterojunction structure can significantly improve the migration and separation efficiency of photogenerated electron-hole pairs, thereby it had excellent performance of photocatalytic hydrogen production.
Keywords: CdS; Co9S8; one-dimensional material; photocatalytic hydrogen production
参考文献(References):
[1]STEVEN J D, CALDEIRA K, MATTHEWS A H D. Future CO2 emissions and climate change from existing energy infrastrture[J]. Science, 2010, 329(5997): 1330-1333.
[2]CHEN S, TAKATA T, DOMEN K. Particulate photocatalysts for overall water splitting[J]. Nature Reviews Materials, 2017, 2: 17050.
[3]HOU Y, WEN Z, CUI S, et al. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting[J]. Advanced Functional Materials, 2015, 5(6): 872-882.
[4]WANG P, ZHOU Q, XIA Y, et al. Understanding the charge separation and transfer in mesoporous carbonate-doped phase-junction TiO2 nanotubes for photocatalytic hydrogen production[J]. Applied Catalysis B Environmental, 2018, 225: 433-444.
[5]WANG H, ZHENG W, LI W, et al. Control the energy band potential of ZnMgO solid solution with enhanced photocatalytic hydrogen evolution capacity[J]. Applied Catalysis B: Environmental, 2017, 217: 523-529.
[6]齐中, 王熙, 李来胜, 等. 基于水热法制备的TiO2/MoS2复合光催化剂及其光催化制氢活性[J]. 环境化学, 2016, 35(5): 1027-1034.
[7]XU D F, YU J G, MENG A Y, et al. Enhanced photocatalytic H2 production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets[J]. Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications, 2016, 198: 286-294.
[8]FUJISHIMA A, HONDA K. Electrochemical photocatalysis of water at semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
[9]JIANG C Y, XU X X, MEI M L, et al. Coordination polymer derived sulfur vacancies rich CdS composite photocatalyst with nitrogen doped carbon as matrix for H2 production[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 854-861.
[10]VINOKUROV V, STAVITSKAYA A V, IVANOV E V, et al. Halloysite nanoclay based CdS formulations with high catalytic activity in hydrogen evolution reaction under visible light irradiation[J]. ACS Sustainable Chemistry & Eneing,2017, 5(12): 11316-11323.
[11]TANG Z R, HAN B, HAN C, et al. One dimensional CdS based materials for artificial photoredox reactions[J]. Journal of Materials Chemistry A, 2016, 5(6): 2387-2410.
[12]AMARANATHA R D, HWA K E, MADHUSUDANA G, et al. Enhanced photocatalytic hydrogen evolution by integrating dual Co-Catalysts on heterophase CdS Nano-Junctions[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12835-12844.
[13]HAO X Q, HU Y, CUI Z W, et al. Self-constructed facet junctions on hexagonal CdS single crystals with high photoactivity and photostability for water splitting[J]. Applied Catalysis B: Environmental, 2019, 244: 694-703.
[14]LIN H F, SUN B W, WANG H, et al. Unique 1D Cd1-xZnxS@O-MoS2/NiOx nanohybrids: highly efficient visible-light-driven photocatalytic hydrogen evolution via integrated structural regulation[J]. Small, 2019, 15(29): 1804115.
[15]WANG S, ZHU B, LIU M, et al. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2 production activity[J]. Applied Catalysis B: Environmental, 2019, 243: 19-26.
[16]ZHANG G P, CHEN D Y, LI N J, et al. Construction of hierarchical hollow Co9S8/ZnIn2S4 tubular heterostructures for highly efficient solar energy conversion and environmental remediation[J]. Angewandte Chemie, 2020, 59(21): 8255-8261.
[17]WANG S B, GUAN B Y, WANG X, et al. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution[J]. Journal of the American Chemical Society, 2018, 140(45): 15145-15148.
[18]GU J Y, HUAN C, FANG J, et al. All-solid-state Z-Scheme Co9S8/graphitic carbon nitride photocatalysts for simultaneous reduction of Cr(VI) and oxidation of 2, 4-dichlorophenoxyacetic acid under simulated solar irradiation[J]. Chemical Engineering Journal, 2019, 360: 1188-1198.
[19]QIU B, ZHU Q, DU M, et al. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-Scheme photocatalytic water splitting[J]. Angewandte Chemie International Edition, 2017, 56(10): 2684-2688.
[20]TAN P F, LIU Y, ZHU A Q, et al. Rational design of Z-Scheme system based on 3D hierarchical CdS Supported 0D Co9S8 nanoparticles for superior photocatalytic H2 generation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10385-10394.
[21]CHAVA R K, DO J Y, KANG M. Enhanced photoexcited carrier separation in CdS-SnS2 heteronanostructures: A new 1D-0D visible photocatalytic system for hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2019, 7(22): 13614-13628.
[22]JIANG W S, ZONG X P, AN L, et al. Consciously constructing heterojunction or direct Z-Scheme photocatalysts by regulating electron flow direction[J]. ACS Catalysis, 2018, 8(3): 2209-2217.
[23]WANG L, ZHENG X S, CHEN L, et al. Van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting[J]. Angewandte Chemie, 2018, 57(13): 3454-3458.