刘阿珍1,2, 张卫义1,2, 李汉勇2, 李星波2
(1. 北京工业大学 环境与生命学部, 北京 100124;2. 北京石油化工学院 机械工程学院, 北京 102617)
DOI:10.13732/j.issn.1008-5548.2021.03.006
收稿日期: 2020-12-07,修回日期:2021-02-28,在线出版时间:2021-04-07 12:58。
基金项目:国家自然科学基金项目,编号:51774046。
第一作者简介:刘阿珍(1994—),女,硕士研究生,研究方向为强化传热传质、 液-固流态化。E-mail:a19950813liu@163.com。
通信作者简介:张卫义(1963—),男,硕士,副教授,硕士生导师,研究方向为过程装备机械、 液-固流态化。E-mail:zhangweiyi@bipt.edu.cn。
摘要:为了研究具有高耐磨性、高腐蚀性等特点的固体颗粒在液-固流化床的颗粒流态化特性,采用不同粒径的氧化铝、氧化锆、轴承钢在垂直玻璃圆柱形立管中进行实验,研究液-固流化床中颗粒的最小流态化速度。实验结果得到5种不同颗粒的最小流态化速度,将实验值与经验公式计算值进行比较,验证传统经验公式的计算精度与实验数据的可用性,以及颗粒密度和颗粒粒径对最小流态化速度的影响规律;根据实验结果,采用最小二乘法,在传统经验公式的基础上提出一组新的修正系数,用以计算粒径较大的固体颗粒的最小流态化速度。当直径大于2.5 mm、临界雷诺数大于175时,此式计算精度更高。
关键词:液-固流化床;流态化;最小流态化速度;颗粒特性
Abstract:In order to study the particle fluidization characteristics of solid particles with high wear resistance and high corrosion in liquid-solid fluidized bed,aluminum oxide,zirconia and bearing steel with different particle sizes were used to conduct experiments in vertical glass cylindrical riser,and the minimum fluidization velocity of particles in liquid-solid fluidized bed was discussed. The experimental results obtained the minimum fluidization velocity of five different particles. The experimental values were compared with the calculated values of empirical formula to verify the calculation accuracy of traditional empirical formula and the availability of experimental data,as well as the effects of particle density and particle size on the minimum fluidization velocity. According to the experimental results,using the least square method,a new correction coefficient was proposed based on the traditional empirical formula. When the diameter is greater than 2. 5 mm and the critical Reynolds number is greater than 175,the calculation accuracy of this formula is higher.
Keywords:liquid-solid fluidized bed; fluidization; minimum fluidization velocity; particle property
参考文献(References):
[1]SHAO Y J, GU J R, ZHONG W Q, et al. Determination of minimum fluidization velocity in fluidized bed at elevated pressures and temperatures using CFD simulations[J]. Powder Technology, 2019, 350: 81-90.
[2]KANG Y, KIM M K, YANG S W, et al. Characteristics of three-phase (gas-liquid-solid) circulating fluidized beds[J]. Journal of Chemical Engineering of Japan, 2018, 51(9): 740-761.
[3]SONG Y F, ZHU J, ZHANG C, et al. Comparison of liquid-solid flow characteristics in upward and downward circulating fluidized beds by CFD approach[J]. Chemical Engineering Science, 2019, 196: 501-513.
[4]ZHAO C, ZHANG X, DING J, et al. Study on recovery of valuable metals from waste mobile phone PCB particles using liquid-solid fluidization technique[J]. Chemical Engineering Journal, 2017, 311: 217-226.
[5]MADDAHI M H, HATAMIPOUR M S, JAMISLAHMADI M. A model for the prediction of thermal resistance of calcium sulfate crystallization fouling in a liquid-solid fluidized bed heat exchanger with cylindrical particles[J]. International Journal of Thermal Sciences, 2019, 125: 11-22.
[6]PARISIEN V, PJONTEK D, MCKNIGHT C A, et al. Impact of catalyst density distribution on the fluid dynamics of an ebullated bed operating at high gas holdup conditions[J]. Chemical Engineering Science, 2017, 170: 491-500.
[7]RASTEH M, FARHADI F, AHMADI G. Empirical models for minimum fluidization velocity of particles with different size distribution in tapered fluidized beds[J]. Powder Technology, 2018, 338: 563-575.
[8]LI N, JIANG F, HAN X, et al. Study on the particle distribution of a two-pass circulating fluidized bed evaporator with baffle[J]. Powder Technology, 2016, 295: 47-58.
[9]LI Y J, LIU M Y, LI X N. Li, Flow regimes in gas-liquid-solid mini-fluidized beds with single gas orifice[J]. Powder Technology, 2018, 333: 293-303.
[10]张卫义, 陈罕, 方陈靖. 液-固流态化最小流态化速度计算方法改进[J]. 石油化工设备, 2011, 40(1): 5-9.
[11]张卫义, 方陈靖, 陈罕. 液-固流态化固体颗粒终端速度vt研究[J]. 石油化工设备, 2011, 40(2): 10-13.
[12]沙杰. 液-固流化床中颗粒分选行为和运动特性的研究[D]. 徐州: 中国矿业大学, 2013.
[13]XY Y, LI T, MUSSER J, et al. CFD-DEM modeling the effect of column size and bed height on minimum fluidization velocity in micro fluidized beds with Geldart B particles[J]. Powder Technology, 2017, 318: 321-328.
[14]TAN M, KARABACA R, ACAR M. Experimental assessment the liquid-solid fluidized bed heat exchanger of thermal performance: an application[J]. Geothermics, 2016, 62: 70-78.
[15]JIANG F, ZHAO P L, QI G P, et al. Flow characteristics in a horizontal liquid-solid circulating fluidized bed[J]. Powder Technology, 2019, 342: 24-35.
[16]ERGUN S. Fluid flow through packed columns[J]. Journal of Materials Science and Chemical Engineering, 1952, 48(2): 89-94.
[17]WEN C Y, YU Y H. A generalized method for predicting the minimum fluidization velocity[J]. AICHE Journal, 1966, 12(3): 610-612.
[18]LUCAS A, ARNALAOS J, CASAL J, et al. An improved equation for the calculation of minimum fluidization velocity[J]. Industrial & Engineering Chemistry Process Design and Development, 1986, 25(2): 426-429.