ISSN 1008-5548

CN 37-1316/TU

2021年27卷  第3期
<返回第3期

旋流流化床内的流动及传热特性

Flow and heat transfer characteristics in swirling fluidized bed

武 强, 章 凯, 王 帅

(哈尔滨工业大学 能源科学与工程学院, 黑龙江 哈尔滨 150001)


DOI:10.13732/j.issn.1008-5548.2021.03.003

收稿日期: 2021-01-12,修回日期:2021-03-12,在线出版时间:2021-04-07 16:09。

基金项目:国家自然科学基金,编号:52076060。

第一作者简介:武强(1999—),男,硕士研究生,研究方向为多相流数值模拟。E-mail: 969548078@qq.com。

通信作者简介:王帅(1985—),男,博士,教授,博士生导师,研究方向为多相流动与热质传递,颗粒流体复杂系统的计算流体力学与反应器多尺度模拟。E-mail: shuaiwang@hit.edu.cn。


摘要:采用欧拉-拉格朗日混合方法,对旋流流化床的流动及传热性能进行相关研究;对旋流流化床中床层局部空隙率和颗粒旋流速度进行预测,在此基础上探讨反应器内壁面的磨损行为,分析运行状态对于磨损行为的影响;进一步对床层与壁面间的传热行为以及气固相间传热行为、操作速度的影响等进行研究。结果表明:床层空隙率分布以及颗粒旋流速度大小对于操作速度的变化较为敏感,稳定旋流模式下壁面磨损大幅增强;小颗粒相表现出更好的相间传热性能。

关键词:旋流流化床;稠密离散相模型;流动;磨损;传热

Abstract:In this paper,a hybrid Eulerian-Lagrangian approach was used to study the flow and heat transfer performance of a swirling fluidized bed. Based on the prediction of local bed voidage and particle swirling velocity in the swirling fluidized bed,the wear behavior of the wall was studied,and the influence of operating conditions on the wear behavior was analyzed. Moreover,the bed-to-wall heat transfer and gas-solid interphase heat transfer were analyzed,and the influence of operating speed was also considered. The results show that the bed voidage distribution in the bed and the swirl velocity of particles are sensitive to the change of operation gas velocity,and the wall wear increases greatly in the stable swirling mode. In addition,small particles show better interphase heat transfer performance than others.

Keywords:swirling fluidized bed; dense discrete phase model; flow characteristic; wear; heat transfer


参考文献(References):

[1]WANG S, YIN W, LIU S, et al. Numerical studies of mass transfer performance in fluidized beds of binary mixture[J]. Applied Thermal Engineering, 2019, 158: 113465.

[2]ZHANG Y, ZHAO Y, GAO Z, et al. Experimental and Eulerian-Lagrangian-Lagrangian study of binary gas-solid flow containing particles of significantly different sizes[J]. Renewable Energy, 2019, 136: 193-201.

[3]NAKAMURA H, TOKUDA T, IWASAKI T, et al. Numerical analysis of particle mixing in a rotating fluidized bed[J]. Chemical Engineering Science, 2007, 62(11): 3043-3056.

[4]MITROFANOVA O V. Hydrodynamics and heat transfer in swirling flows in channels with swirlers (analytical review)[J]. High Temperature, 2003, 41(4): 518-559.

[5]AWORINDE S M, HOLLAND D J, DAVIDSON J F. Investigation of a swirling flow nozzle for a fluidised bed gas distributor[J]. Chemical Engineering Science, 2015, 132(18): 22-31.

[6]CHUWATTANAKUL V, EIAMSA-ARD S. Hydrodynamics investigation of pepper drying in a swirling fluidized bed dryer with multiple-group twisted tape swirl generators[J]. Case Studies in Thermal Engineering, 2019, 13: 100389.

[7]LU P, CAO Y, PAN W P, et al. Heat transfer characteristics in a horizontal swirling fluidized bed[J]. Experimental Thermal and Fluid Science, 2011, 35(6): 1127-1134.

[8]MOHIDEEN M F, SREENIVASAN, SULAIMAN S A, et al. Heat transfer in a swirling fluidized bed with Geldart type-D particles[J]. Korean Journal of Chemical Engineering, 2012, 29(7): 862-867.

[9]SIRISOMBOON K, LAOWTHONG P. Experimental investigation and prediction of heat transfer in a swirling fluidized-bed combustor[J]. Applied Thermal Engineering, 2019, 147(25): 718-727.

[10]TAWFIK M H M, REFAAT D M, MOHMED A H. Heat transfer and hydrodynamics of particles mixture in swirling fluidized bed[J]. International Journal of Thermal Sciences, 2020, 147: 106-134.

[11]TAWFIK M H M, REFAAT D M, MOHMED A H. Heat transfer and bed dynamics study on a swirling fluidized bed under various inlet configurations[J]. International Journal of Thermal Sciences, 2020, 158: 106523.

[12]FINNIE I. Erosion of surfaces by solid particles[J]. Wear, 1960, 3(2): 87-103.

[13]BITTER J G A. A study of erosion phenomena part I[J]. Wear, 1963, 6(1): 5-21.

[14]OKA Y I, OKAMURA K, YOSHIDA T. Practical estimation of erosion damage caused by solid particle impact[J]. Wear, 2005, 259(S1/2/3/4/5/6): 95-101.

[15]WANG S, XU S, LIU S, et al. Prediction of sorption-enhanced reforming process on hydrotalcite sorbent in a fluidized bed reactor[J]. Energy Conversion and Management, 2019, 180(15): 924-930.

[16]GIDASPOW D. Multiphase flow and fluidization: continuum and kinetic theory descriptions[M]. New York: Academic Press, 1994.

[17]JAIN V, KALO L, KUMAR D, et al. Experimental and numerical investigation of liquid-solid binary fluidized bed: radioactive particle tracking (RPT) technique and DDPM simulations[J]. Particuology, 2017, 33: 112-122.

[18]CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 2008, 30(3): 331-336.