王 刚, 李金凯, 段广彬, 刘宗明
(济南大学 材料科学与工程学院, 山东 济南 250022)
DOI:10.13732/j.issn.1008-5548.2021.03.001
收稿日期: 2020-11-20,修回日期:2021-03-09,在线出版时间:2021-04-07 14:27。
基金项目:山东省自然科学基金项目,编号:ZR2020ME045。
第一作者简介:王刚(1996—),男,硕士研究生,研究方向为无机非金属材料。E-mail:mse_wg@163.com。
通信作者简介:刘宗明(1965—),男,博士,教授,博士生导师,研究方向为多相流理论与应用(纳米流体、 粉体工程)、 热能工程。E-mail: liuzm@ujn.edu.cn。
摘要:综述钇铝石榴石体系荧光陶瓷、多铝酸盐体系荧光陶瓷、氮化物体系荧光陶瓷3类荧光陶瓷材料的发光机理、制备工艺及其应用进展。荧光陶瓷材料具有热力学性能好、机械性能优异、良好的化学稳定性和微观结构可调等优点。现有的LED照明设备多使用树脂封装荧光粉,其热稳定性差,无法在大功率、长时间的应用场景中使用,故此,采用热力学性能好、机械性能优异、具有良好的化学稳定性和微观结构可调等优点的荧光陶瓷材料,取代传统树脂封装荧光粉制备LED照明设备。荧光陶瓷材料当前依然存在制备条件苛刻、工艺复杂和无法实现全色谱发光等问题,不能适用于规模化生产应用,这是接下来业界的主要研究方向。
关键词:荧光陶瓷;发光原理;钇铝石榴石;铝酸盐;氮化物
Abstract:In this paper,the luminescence mechanism,preparation process and application progress of fluorescent ceramics with yttrium aluminum garnet system,aluminate system and nitrite system are reviewed. Fluorescent ceramic materials have the advantages of good thermodynamic properties,excellent mechanical properties,good chemical stability and adjustable microstructure.The existing LED lighting equipment mostly uses resin-encapsulated phosphors,which have poor thermal stability and cannot be used in high-power and long-term application scenarios. Therefore,fluorescent ceramic materials with good thermodynamic properties,excellent mechanical properties,good chemical stability and adjustable microstructure are used to replace the traditional resin encapsulated phosphor for the preparation of LED lighting equipment. However,fluorescent ceramic materials still have some problems,such as harsh preparation conditions,complex process and inability to achieve full chromatographic luminescence,which are not suitable for large-scale production and application. This is also the main research direction of the industry in the future.
Keywords:fluorescent ceramics; luminescence principle; yttrium aluminum garne; aluminate; nitride
参考文献(References):
[1]TAGUCHI T. Present status of white LED lighting technologies in Japan[J]. Journal of Light & Visual Environment, 2003, 27(3): 131-139.
[2]刘荣辉, 何华强, 黄小卫, 等. 白光LED荧光粉研究及应用新进展[J]. 半导体技术, 2012, 37(3): 221-227.
[3]SHIMIZU Y, SAKANO K, NOGUCHI Y, et al. Light emitting device having a nitride compound semiconductor and a phosphorcontaining a garnet fluorescent material: US5998925[P]. 1997-07-29.
[4]SCHUBERT E F, KIM J K. Solid-state light sources getting smart[J]. Science, 2005, 308(5726): 1274-1278.
[5]LI S X, TANG D M, TIAN Z F, et al. New insights into the microstructure of translucent CaAlSiN3:Eu2+ phosphor ceramics for solid-state laser lighting[J]. Journal of Materials Chemistry C, 2016, 5(5): 1042-1051.
[6]郑莉莉, 郭自泉, 严威, 等. 三基色白光LED的司辰节律因子研究[J]. 发光学报, 2016, 37(11): 1384-1389.
[7]KNEISSL M, SEONG T, HAN J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies[J]. Nature Photonics, 2019, 13(4): 223-244.
[8]谭淑媛. 几种稀土发光材料的合成及发光性质的研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.
[9]TANG Y R, ZHOU S M, YI X Z, et al. Microstructure optimization of the composite phase ceramic phosphor for white LEDs with excellent luminous efficacy[J]. Optics Letters, 2015, 40(23): 5479-5481.
[10]鲁景亮. 稀土发光材料研发及应用进展[J]. 黄金科学技术, 2017, 25(2): 32-37.
[11]刘荣辉, 黄小卫, 何华强, 等. 稀土发光材料技术和市场现状及展望[J]. 中国稀土学报, 2012, 30(3): 265-272.
[12]沈雷军, 乔鑫, 王忠志. 稀土发光材料技术现状及展望[J]. 稀土信息, 2019(4): 10-14.
[13]白木, 子荫. 稀土发光材料的原理与应用[J]. 灯与照明, 2002, 12(18): 48-51.
[14]QIAO J W, ZHAO J, LIU Q L, et al. Recent advances in solid-state LED phosphors with thermally stable luminescence[J]. Rare Earth, 2019, 37(6): 565-572.
[15]BIZZARRI C, SPULING E, KNOLL D M, et al. Sustainable metal complexes for organic light-emitting diodes (OLEDs)[J]. Coordination Chemistry Reviews, 2018, 373(SI): 49-82.
[16]MOON D G. Encyclopedia of modern optics[M]. Cambridge:Academic Press, 2018: 232-239.
[17]马俊红. 稀土掺杂四硼酸钇铝荧光粉及透明陶瓷的制备与性能研究[D]. 西安: 西安电子科技大学, 2018.
[18]PIDLUZHNA A, LVANIUK K, STAKHIRA P, et al. Multi-channel electroluminescence of CdTe/CdS core-shell quantumdots implemented into a QLED device[J]. Dyes Pigments, 2019, 162: 647-653.
[19]XUE L, LIU Y, LI F S, et al. Highly flexible light emitting diodes based on a quantum-dots-polymer composite emitting layer[J]. Vacuum, 2019, 163: 282-286.
[20]徐叙溶. 发光学与发光材料[M]. 北京:化学工业出版社, 2004: 183-187.
[21]李金凯. 钆铝石榴石( Gd3Al5O12) 的晶格稳定化及其新型发光材料[D]. 沈阳: 东北大学, 2014.
[22]杨建虎, 戴世勋, 姜中宏. 稀土离子的上转换发光及研究进展[J]. 物理学进展, 2003, 23(3): 284-299.
[23]张中太, 张俊英. 无化光致发光材料及应用[M]. 北京:化学工业出版社, 2005: 69-71.
[24]AUZEL F. Upconversion processes in coupled ion systems[J]. Journal of Luminescence, 1990, 45: 341-345.
[25]WANG F, LIU X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chemical Society Reviews, 2009, 38(4): 976-989.
[26]WANG L, XIE R J, TAKAYUKI S. Down-conversion nitride materials for solid state lighting: recent advances and perspectives[J]. Chemical Reviews, 2018, 118: 1951-2009
[27]MCKITTRICK J, SHEA-ROHWER L E. Down-conversion materials for solid-state lighting[J]. Journal of the American Ceramic Society, 2014, 97: 1327-1352.
[28]YOON H C, HEEYEON Y. Highly efficient green Zn-Ag-In-S/Zn-In-S/ZnS QDs by a strong exothermic reaction for down-converted green and tripackage white LEDs[J]. Advanced Functional Materials, 2017, 27(4): 1602638.
[29]刘泽华. 激光照明用Al2O3基荧光陶瓷的制备及其性能研究[D]. 北京: 中国科学院大学, 2019.
[30]XU J, YANG Y, GUO Z Q, et al. Comparative study of Al2O3-YAG∶Ce composite ceramic and single crystal YAG∶Ce phosphors for high-power laser lighting[J]. Ceramics International, 2020, 46(11): 17923-17928.
[31]JI E K, SONG Y H, BAK S H, et al. The design of ceramic phosphor plate with functional materials for applications in high power LEDs[J]. Journal of Materials Chemistry, 2015, 3(48): 12390-12393.
[32]TANG Y R, ZHOU S M, YI X Z, et al. Microstructure optimization of the composite phase ceramic phosphor for white LEDs with excellent luminous efficacy[J]. Optics Letters, 2015, 40(23): 5479-5481.
[33]MENAZEA A A, MOSTAFA A M, AL-ASHKAR E A. Effect of nanostructured metal oxides (CdO, Al2O3, Cu2O) embedded in PVA via Nd∶YAG pulsed laser ablation on their optical and structural properties[J]. Journal of Molecular Structure, 2020, 1203: 127374.
[34]于尚君, 李金凯, 段广彬, 等. 石榴石型铝酸盐发光材料的研究进展[J]. 济南大学学报(自然科学版), 2020, 3(3): 197-202.
[35]ALI H, KHEDR M A. Energy transfer between Ce and smco-doped YAG nanocrystals for white light emitting devices[J]. Results Phys, 2019, 12: 1777-1782.
[36]曹秀清. 稀土离子(Dy,Ce)掺杂钇铝石榴石(YAG)晶体的制备及其光学性能研究[D]. 南宁:广西大学, 2017.
[37]郑亚玲. 石榴石荧光粉局域结构与发光性能研究[D]. 北京: 北京科技大学, 2019.
[38]WEI N, LU T C, LI F, et al. Transparent Ce∶Y3Al5O12 ceramic phosphors for white light-emitting diodes[J]. Applied Physics Letter, 2012, 101(6): 101-104.
[39]罗文飞, 张彬, 刘根, 等. Ce∶YAG荧光陶瓷封装白光LED的出光特性分析[J]. 光学技术, 2014, 40(3): 277-281.
[40]邵秀晨, 周圣明, 唐燕如, 等. Ce∶YAG荧光陶瓷掺杂Gd对白光LED发光性能的影响[J]. 无机材料学报, 2018, 33(10): 1119-1123.
[41]YAO Q, HU P, SUN P, et al. YAG∶Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting[J]. Advanced Materials, 2020, 32(19): 1907888.
[42]MA C Y, TANG F, CHEN J D, et al. Spectral, energy resolution properties and green-yellow LEDs applications of transparent Lu3Al5O12∶Ce3+ ceramics[J]. Journal of the European Ceramic Society, 2016,36(16): 4205-4213.
[43]ZHANG W, HE D Q, MA G, et al. Low-temperature synthesis of BaMgAl10O17∶Eu2+ blue phosphors[J]. Journal of Physics and Chemistry of Solids, 2014, 75(2): 163-167.
[44]HAO V B, TU N,MANH C N, et al. Structural and photoluminescent properties of nanosized BaMgAl10O17∶Eu2+ blue-emitting phosphors prepared by sol-gel method[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6(3): 035013.
[45]WANG X, LI J H, SHI P L, et al. High dispersibility and enhanced luminescence properties of BaMgAl10O17∶Eu2+ phosphors derived from molten salt synthesis[J]. Optical Materials, 2015, 46: 432-437.
[46]ZHANG J C, ZHOU M J, LIU B T, et al.The thermal stability and photoluminescence degradation of Mn2+ in fluorescent lamp used BaMgAl10O17: Eu2+, Mn2+ phosphor[J]. Applied Ceramic Technology, 2013, 10(4): 638-642.
[47]COZZAN C, BRADY M J, DEA N O, et al. Monolithic translucent BaMgAl10O17∶Eu2+ phosphors for laser-driven solid state lighting[J]. AIP Advances, 2016, 6(10): 105005.
[48]VERMA A, VERMA A, BRAMHE G V, et al. Optical studies of the Ba1-xMgAl10O17∶Eux phosphors synthesis by combustion route[J]. Journal of Alloys and Compounds, 2018, 769: 831-842.
[49]ZHU Q Q, XU X, HAO L Y. Highly stable Si-N-doped BaMgAl10O17: Eu phosphor prepared by EuSi2O2N2 incorporation: structure and luminescence properties[J]. Journal of Materials Science Materials in Electronics, 2018, 29(8): 6428-6433.
[50]MICHAEL K, SEONG T Y, JUNG H, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies[J]. Nature Photonics, 2019, 13(4): 233-244.
[51]NARUKAWA Y, ICHIKAWA M, SANGA D, et al.White light emitting diodes with super-high luminous effcacy[J]. Journal of Physics D: Applied Physics, 2010, 43(35): 354002.
[52]LIU X, CHEN B, TU B T, et al. Characterization in activators’ distribution and photoluminescence properties of Ce3+ doped MgAlON transparent fluorescent ceramic[J]. Journal of the European Ceramic Society, 2016, 36(11): 2801-2805.
[53]PRICHA I, ROSSNER W, MOOS R. Pressureless sintering of luminescent CaAlSiN3: Eu ceramics[J]. Journal of Ceramic Science and Technology, 2015, 6(1): 63-67.
[54]WIEG A T, PENILLA E H, HARDIN C L, et al. Broadband white light emission from Ce: AlN ceramics: high thermal conductivity down-converters for LED and laser-driven solid state lighting[J]. APL Materials, 2016, 4(12):126105.