ISSN 1008-5548

CN 37-1316/TU

2021年27卷  第4期
<返回第4期

MIL-101前驱体制备MnOx-Cr2O3催化剂及其对苯的催化氧化性能

Preparation of MnOx-Cr2O3 from MIL-101 precursor and its catalytic oxidation performance for benzene

郑钦中1,2, 武晓峰1, 陈运法1,3

(1. 中国科学院 过程工程研究所; 多相复杂系统国家重点实验室, 北京 100190;2. 中国科学院大学 化学工程学院,北京 100049;3. 中国科学院 城市环境研究所; 区域大气环境研究卓越创新中心, 福建 厦门 361021)


DOI:10.13732/j.issn.1008-5548.2021.04.007

收稿日期: 2021-04-26, 修回日期:2021-05-08,在线出版时间:2021-06-01 09:40。

基金项目:国家自然科学基金项目,编号:51672273。

第一作者简介:郑钦中(1995—),男,硕士研究生,研究方向为纳米结构材料。E-mail:zheng-qz@qq.com。

通信作者简介:武晓峰(1978—),男,博士,研究员,博士生导师,研究方向为环境净化材料。E-mail:wxftsjc@ipe.ac.cn。


摘要:以硝酸铬、对苯二甲酸、氢氟酸为原料,水热法制备MIL-101(Cr);经KMnO4预浸渍、H2O2还原对其进行MnOx负载,再经热解制备MnOx-Cr2O3复合催化剂;借助BET、XRD、SEM、TEM、XPS等测试手段,研究不同MnOx负载量的MnOx-Cr2O3复合催化剂对苯的催化氧化活性。结果表明:氢氟酸的添加量对MIL-101(Cr)孔结构影响显著,添加125μL的氢氟酸制备的MIL-101(Cr)具有最佳的多孔性,经甲醇多次活化后,其比表面积达到3 447 m2/g;MnOx-Cr2O3复合催化剂,比表面积为89.30 m2/g,远大于市售的Cr2O3载体的,对苯催化氧化的活性T90%为280℃;MnOx负载量质量分数为5%时,催化苯的T90%为266℃,但增加MnOx负载量对复合催化剂的催化活性影响不大;MnOx-Cr2O3复合催化剂的高催化氧化活性归因于Mn与Cr之间的电子迁移与表面晶格氧含量高;其良好催化活性和无毒MnOx包覆可抑制毒性Cr元素析出。

关键词:铬氧化物;锰氧化物;催化氧化;挥发性有机物

Abstract:Using chromium nitrate,terephthalic acid and hydrofluoric acid as raw materials,MIL-101(Cr) was prepared by hydrothermal method.The MnOx-Cr2O3 composite catalysts were subsequently prepared by high temperature pyrolysis by preimpregnation with KMnO4 and reduction with H2O2.The catalytic activity of MnOx-Cr2O3 composite catalysts to benzene oxidation with different MnOx loading were characterized by BET、XRD、SEM、TEM、XPS.The results show that the addition of hydrofluoric acid plays a significant role in the pore structure of MIL-101(Cr) with high specific surface area.The MIL-101(Cr) prepared by adding 125μL hydrofluoric acid has the best porosity,and its specific surface area reaches 3 447 m2/g after multiple activation with methanol.Specific surface area of high activity MnOx-Cr2O3 catalyst support is 89.30 m2/g,much higher than the commercial Cr2O3 support,andshows high catalytic activity for benzene oxidation (T90%=280℃).When the MnOx loading is 5%,the T90% of benzene being catalyzed is 266℃,but increasing the MnOx loading has little effect on the catalytic activity of the composite catalysts.The high catalytic activity of MnOx-Cr2O3 for benzene oxidation is attributed to the electron transfer between Mn and Cr,and the high surface lattice oxygen content.Good catalytic activity and non-toxic MnOx coating of MnOx-Cr2O3 can inhibit the release of toxic Cr element.

Keywords:chromium oxide; manganese oxide; catalytic oxidation; volatile organic compounds


参考文献(References):

[1]LI Q, SU G, LI C, et al.An investigation into the role of VOCs in SOA and ozone production in Beijing, China[J]. Science of the Total Environment,2020, 720(10): 137536: 1-14.

[2]刘鹏, 周湘梅. VOC的回收与处理技术简介[J]. 石油化工环境保护, 2001, 24(3): 39-42.

[3]BAI G, DAI H, LIU Y, et al. Preparation and catalytic performance of cylinder-and cake-like Cr2O3 for toluene combustion[J]. Catalysis Communications, 2013, 36: 43-47.

[4]GARCIA T, AGOURAM S, S

NCHEZ-ROYO J F, et al. Deep oxidation of volatile organic compounds using ordered cobalt oxides prepared by a nanocasting route[J]. Applied Catalysis A: General, 2010, 386(1/2): 16-27.

[5]李宁, 高竹琦, 杨莉莉. 六价铬化物对大鼠毒性的生物化学和病理学研究[J]. 山西医学院学报, 1995(1): 12-14, 82.

[6]CHEN X, CAI S, YU E, et al. MnOx/Cr2O3 composites prepared by pyrolysis of Cr-MOF precursors containing in situ assembly of MnOx as high stable catalyst for toluene oxidation[J].Applied Surface Science, 2019, 475: 312-324.

[7]LI T Y, CHIANG S J, LIAW B J, et al. Catalytic oxidation of benzene over CuO/Ce1-xMnxO2 catalysts[J]. Applied Catalysis B: Environmental,2011, 103(1): 143-148.

[8]BRITT D, TRANCHEMONTAGNE D, YAGHI O M. Metal-organic frameworks with high capacity and selectivity for harmful gases[J]. Proceedings of the National Academy of Sciences, 2008, 105(33): 11623.

[9]DAS R, PACHFULE P, BANERJEE R, et al.Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides[J]. Nanoscale, 2012, 4(2): 591-599.

[10]ZHAO S N, SONG X Z, SONG S Y, et al. Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors[J]. Coordination Chemistry Reviews, 2017, 337: 80-96.

[11]ASHOURI F, ZARE M, BAGHERZADEH M.Manganese and cobalt-terephthalate metal-organic frameworks as a precursor for synthesis of Mn2O3, Mn3O4 and Co3O4 nanoparticles: active catalysts for olefin heterogeneous oxidation[J]. Inorganic Chemistry Communications, 2015, 61: 73-76.

[12]LU H, KONG X, HUANG H, et al.Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene[J]. Journal of Environmental Sciences, 2015, 32: 102-107.

[13]LI X, WANG J, LIU X, et al. Direct imaging of tunable crystal surface structures of MOF MIL-101 using high-resolution electron microscopy[J]. Journal of the American Chemical Society, 2019, 141(30): 12021-12028.

[14]LAI Y T, CHEN T C, LAN Y K, et al. Pt/SBA-15 as a highly efficient catalyst for catalytic toluene oxidation[J]. ACS Catalysis, 2014, 4 (11): 3824-3836.

[15]HAQUE E, LO V, MINETT A I, et al. Dichotomous adsorption behaviour of dyes on an amino-functionalised metal-organic framework, amino-MIL-101 (Al)[J]. Journal of Materials Chemistry A, 2014, 2(1): 193-203.

[16]LI H, LU G, DAI Q, et al. Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres[J]. Applied Catalysis B: Environmental,2011, 102 (3): 475-483.

[17]MARTINS M,

B, et al. Mn2O3-MO (MO=ZrO2, V2O5, WO3) supported PtN inanoparticles: designing stable and efficient electrocatalysts for oxygen reduction and borohydride oxidation[J]. Microporous and Mesoporous Materials, 2019, 273: 286-293.

[18]CHEN J, CHEN X, XU W, et al.Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene[J]. Chemical Engineering Journal, 2017, 330: 281-293.

[19]DUFOUR L-C, EL ANSSARI A, DUFOUR P, et al. Effect of thermal segregation on surface properties and reactivity of chromium doped nickel oxide[J]. Surface science,1992, 269: 1173-1179.

[20]OHNO Y, MINEO A, MATSUBARA I. Reflection electron-energy-loss spectroscopy, X-ray-absorption spectroscopy, and X-ray photoelectron spectroscopy studies of a new type of layer compound CrPS4[J]. Physical Review B, 1989, 40(15): 10262.

[21]HALADA G P, CLAYTON C R. Photoreduction of hexavalent chromium during X-ray photoelectron spectroscopy analysis of electrochemical and thermal films[J]. Journal of the Electrochemical Society, 1991, 138(10): 2921.

[22]TANG Z R, KONDRAT S A, DICKINSON C, et al. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature[J]. Catalysis Science & Technology, 2011, 1(5): 740-746.

[23]BIESINGER M, BROWN C, MYCROFT J, et al. X-ray photoelectron spectroscopy studies of chromium compounds[J]. Surface and Interface Analysis, 2004, 36(12): 1550-1563.

[24]AFZAL S, QUAN X, ZHANG J. High surface area mesoporousnanocast LaMO3 (M=Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism[J]. Applied Catalysis B: Environmental, 2017, 206: 692-703.