王丙佳1, 何曼丽2, 陈九玉1, 周鑫浩1, 唐安宇1, 王 鹏1, 龚春慧1, 杨 毅1
(1. 南京理工大学 环境与生物工程学院; 江苏省化工污染控制与资源化重点实验室, 江苏 南京 210094;2. 陆军工程大学 基础部, 江苏 南京 210001)
DOI:10.13732/j.issn.1008-5548.2021.04.002
收稿日期: 2020-12-11, 修回日期:2021-03-22,在线出版时间:2021-06-04 15:09。
基金项目:国家自然科学基金项目,编号:11805101, 11205089;江苏省环保科研课题,编号:JSZCD 2018-044;江苏省凹土资源利用重点实验室开放课题,编号:HPK202001。
第一作者简介:王丙佳(1997—),男,硕士研究生,研究方向为环境功能材料。E-mail: 1325443027@qq.com。
通信作者简介:杨毅(1973—),男,博士,研究员,博士生导师,研究方向为环境功能材料。E-mail: yangyi@njust.edu.cn。
摘要: 为提高氧化亚铜对废水中铀酰离子U(VI)的吸附性能,采用微波法将沸石咪唑锌(ZIF-8)附着在正八面体氧化亚铜(Cu2O)基底材料上,获得氧化亚铜复合沸石咪唑锌(Cu2O@ZIF-8)改性吸附剂, 采用扫描电镜和X射线衍射图谱对改性材料进行表征, 并依据U(VI)吸附实验前后的样品表征结果进行吸附机理分析。 结果表明: 运用微波法制备的Cu2O@ZIF-8粒径约为3 μm, 形貌规整均匀, ZIF-8均匀地附着在正八面体Cu2O上面;吸附U(VI)后的U-Cu2O@ZIF-8为粒径约为200~800 nm的球形团聚颗粒;Cu2O@ZIF-8吸附容量可达到115.5 mg/g,吸附速度较快,能在10 h内达到吸附饱和;环境中的金属干扰离子基本不影响Cu2O@ZIF-8的吸附U(VI)性能;Cu2O@ZIF-8对U(VI)的吸附过程包含物理吸附和化学吸附;溶液中U(VI)被ZIF-8吸附到表面后再转移到Cu2O内核,并与Cu2O发生还原反应生成U(IV),实现了对U(VI)的还原性去除。
关键词: 氧化亚铜复合沸石咪唑锌; 微波法; 铀酰离子U(VI); 吸附性能; 废水
Abstract:In order to improve adsorption performance of cuprous oxide for U(VI) in wastewater, the octahedral Cu2O material was used as base material and zeolite zinc imidazole(ZIF-8) was attached to cuprous oxide(Cu2O) by microwave method to obtain a modified cuprous oxide composite zeolite zinc imidazole (Cu2O@ZIF-8) adsorbent. The modified materials were characterized by scanning electron microscopy and X-ray diffraction characterization. The adsorption mechanism was analyzed based on the sample characterization results before and after the U(VI) adsorption experiment. The results show that Cu2O@ZIF-8 prepared by microwave method has a particle size of about 3 μm and a regular and uniform morphology. ZIF-8 is uniformly attached to the regular octahedral Cu2O. U-Cu2O@ZIF-8 has spherical agglomerated particles with a particle size of about 200~800 nm after adsorbing uranyl ions. Adsorption capacity of Cu2O@ZIF-8 prepared can reach 115.5 mg/g. Adsorption speed is relatively fast and adsorption saturation can be reached within 10 hours. And the metal interference ion in environment has basically no effect on the adsorption U(VI) performance of Cu2O@ZIF-8.The adsorption of U(VI) by Cu2O@ZIF-8 involves physical adsorption and chemical adsorption. U(VI) in solution is adsorbed to surface by ZIF-8 and then transferred to Cu2O core. And a reduction reaction with Cu2O to reduce to U(IV) is happened, which realizes the reductive removal of U(VI).
Keywords:Cu2O@ZIF-8; microwave method; uranyl ion U(VI); adsorption performance; wastewater
参考文献(References):
[1]蔡煜琦, 张金带, 李子颖, 等.中国铀矿资源特征及成矿规律概要[J]. 地质学报, 2015, 89(6): 1051-1069.
[2]LI J, ZHANG L B, PENG J H, et al. Removal of uranium from uranium plant wastewater using zero-valent iron in an ultrasonic field[J]. Nuclear Engineering and Technology, 2016, 48(3): 744-750.
[3]MAXIMOUS N, NAKHLA G, WAN W, et al. Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration[J]. Journal of Membrane Science, 2009, 341(1): 67-75.
[4]SHIH Y J, LIN C P, HUANG Y H, et al. Application of Fered-Fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater[J]. Separation and Purification Technology, 2013, 104: 100-105.
[5]ZHAO N, YIN Z, LIU F, et al. Environmentally persistent free radicals mediated removal of Cr(VI) from highly saline water by corn straw biochars[J]. Bioresour Technol, 2018, 260: 294-301.
[6]孙基惠, 孙玉, 程茜, 等. 介质阻挡放电联合生物法处理染料废水的研究[J]. 水处理技术, 2017, 43(5): 38-42.
[7]TAN K B, VAKILI M, HORRI B A, et al. Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms[J]. Separation and Purification Technology, 2015, 150: 229-242.
[8]冯亚鹏, 李美霞. 金属纳米粒子修饰的石墨烯加强铜基复合材料[J]. 中国粉体技术, 2018, 24(3): 58-62.
[9]CARBONI M, ABNEY C W, LIU S B, et al. Highly porous and stable metal-organic frameworks for uranium extraction[J]. Chemical Science, 2013, 4(6): 2396-2402.
[10]CHU C Y, HUANG M H. Facet-dependent photocatalytic properties of Cu2O crystals probed by using electron, hole and radical scavengers[J]. Journal of Materials Chemistry A, 2017, 5(8): 15116-15123.
[11]CHEN L L, ZHAO D L, CHEN S H, et al. One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal[J]. Journal of Colloid and Interface Science, 2016, 472: 99-107.
[12]SHU J X, WANG Z H, HUANG Y J, et al. Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles: kinetics, isotherms, thermodynamics and mechanism analysis[J]. Journal of Alloys and Compounds, 2015, 633: 338-346.
[13]SARA S, BEATRIZ B, CARLOS B, et al. Ordered mesoporous silica-(ZIF-8) core-shell spheres[J]. Chemical Communications, 2012, 48(75): 9388-9390.
[14]ZHU Y K, CHEN T H, LIU H B, et al. Kinetics and thermodynamics of Eu(III) and U(VI) adsorption onto palygorskite[J]. Journal of Molecular Liquids, 2016, 219: 272-278.
[15]韩臻, 陈元涛, 张炜, 等. Ag-Cu-MOC复合材料的制备及其对碘蒸气的吸附性能[J]. 中国粉体技术, 2020, 26(4): 65-73.
[16]DOLATYARI L, YAFTIAN M R, ROSTAMNIA S. Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials[J]. J Environ Manage, 2016, 169: 8-17.
[17]BAI Z Q, YUAN L Y, ZHU L, et al. Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption[J]. Journal of Materials Chemistry A, 2015, 3(10): 525-534.
[18]CHEN L L, ZHAO D L, CHEN S H, et al. One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal[J]. Journal of Colloid Interface Science, 2016, 472: 99-107.