ISSN 1008-5548

CN 37-1316/TU

2021年27卷  第4期
<返回第4期

稳涡器提升旋风分离器性能的流场分析

Flow field analysis of cyclone separator performance improved by vortex stabilizer

王佳音1, 徐 国2, 赵泽华1, 张荣华1, 杨景轩1, 郝晓刚1

(1. 太原理工大学化学化工学院, 山西太原 030024;2. 营口庆营石油化工设备有限公司, 辽宁营口 115004)


DOI:10.13732/j.issn.1008-5548.2021.04.013

收稿日期: 2021-02-02, 修回日期:2021-05-01,在线出版时间:2021-06-02 16:53。

基金项目:国家自然科学基金项目,编号:U1710101,21506139。

第一作者简介:王佳音(1994—),女,硕士研究生,研究方向为多相流动过程模拟及装备优化。E-mail:1447564737@qq.com。

通信作者简介:杨景轩(1985—),男,博士,副教授,硕士生导师,研究方向为多相流动过程模拟及装备优化。E-mail:yangjingxuan@tyut.edu.cn。


摘要:为了提高旋风分离器分离效率,采用实验和CFD模拟相结合的方法,研究稳涡器的轴向位置对旋风分离器气固两相流动特性和分离性能的影响,探讨稳涡器抑制颗粒返混逃逸机制的形成。结果表明:稳涡器的设置降低轴线附近气流的轴向速度,加深气流的滞流程度,抑制颗粒的返混合逃逸,强化返混颗粒的二次分离作用,提高颗粒的分离效率;稳涡器轴向位置较高时,排尘口截面的通流面积小,下行气流阻力大,运行压降大;当稳涡器顶部与排尘口等高时,轴线附近的轴向速度降幅最大,返混逃逸颗粒数量减少25%~50%,分离效率最高。

关键词:旋风分离器;稳涡器;轴向位置;滞流程度;分离效率

Abstract:In order to improve the separation efficiency of cyclone separator,the influence of axial position of vortex stabilizer on the gas-solid two-phase flow characteristics and separation performance of cyclone separator was studied by experiments and CFD numerical simulation. The formation of the mechanism of vortex stabilizer to inhibit the backmixing and escape of particles was discussed. The results show that the setting of vortex stabilizer reduces the axial velocity of airflow near axis,deepens the stagnation degree of airflow,restrains the backmixing and escape of particles,strengthens the secondary separation effect of backmixing particles and improves the separation efficiency of particles. When the axial position of the vortex stabilizer is high,the flow area of the dust outlet section is small,the downward flow resistance is large and the operating pressure drop is large. When the top of vortex stabilizer is equal to the height of dust outlet,the axial velocity near the axis decreases the most,the number of backmixing escaping particles decreases by 25%~50% and the separation efficiency is the highest.

Keywords:cyclone separator; vortex stabilizer; axial position; degree of stagnant flow; separation efficiency


参考文献(References):

[1]彭丽, 柳冠青, 董方, 等. 基于CFD-DPM的旋风分离器结构设计优化[J]. 中国粉体技术, 2021, 27(2): 63-73.

[2]孙国刚, 时铭显. 提高旋风分离器捕集细粉效率的技术研究进展[J]. 现代化工, 2008, 28(7): 64-69.

[3]WANG S Y, LI H L,WANG R C, et al. Effect of the inlet angle on the performance of a cyclone separator using CFD-DEM[J]. Advanced Powder Technology, 2018, 30(2): 227-239.

[4]高助威, 王娟, 王江云, 等. 基于DPM模型的旋风分离器内颗粒浓度场模拟分析[J]. 石油学报(石油加工), 2018, 34(3): 507-514.

[5]高助威, 王娟, 王江云, 等. 旋风分离器内涡核摆动的特性研究[J]. 工程热物理学报, 2017, 38(12): 2610-2618.

[6]龙薪羽, 刘根凡, 谢翔. 防返混锥对旋风分离器流场影响的大涡模拟[J]. 化工设备与管道, 2019, 56(1):20-25.

[7]王璐, 张兴芳, 董振洲, 等. 旋风分离器入口形式对内流场非稳态特性的影响[J]. 化工学报, 2018, 69(8): 3488-3501.

[8]袁惠新, 石斌磊, 付双成, 等. 旋风分离器矩形入口高宽比对流场及性能的影响研究[J]. 流体机械, 2019, 47(5): 39-43.

[9]沈聪, 董振洲, 王佳音, 等. 稳涡内构件对旋风分离器内流场和性能的影响[J]. 太原理工大学学报, 2020, 51(1): 66-72.

[10]董振洲. 出入口结构及入口气速对旋风分离器内旋流非稳态特性的影响[D]. 太原: 太原理工大学, 2019.

[11]YOSHIDA H, YANG K S, FUKUI K, et al. Effect of apex cone height on particle classifification performance of a cyclone separator[J]. Advanced Powder Technology, 2003, 14(3): 263-278.

[12]YOSHIDA H, NISHIMURA Y, FUKUI K, et al. Effect of apex cone shape on fine particle classification of gas-cyclone[J]. Powder Technology, 2010, 204(1): 54-62.

[13]YOSHIDA H. Effect of apex cone shape and local fluid flow control method on fine particle classifification of gas-cyclone[J]. Chemical Engineering Science, 2013, 85: 55-61.

[14]高助威, 王娟, 王江云, 等. 内构件技术在旋风分离器内的应用进展[J]. 石油学报(石油加工), 2019, 35(2): 393-402.

[15]KOSAKI Y, HIRAI T, YAMANKA Y, et al. Investigation on dust collection and particle classification performance of cyclones by airflow control for design of cyclones[J]. Powder Technology, 2015, 277: 22-35.

[16]WAILEWSKI M. Analysis of the effect of counter-cone location on cyclone separator efficiency[J]. Separation and Purification Technology, 2017, 179: 236-247.

[17]OBERMAIR S, WOISETSCHLGER J, STAUDINGER G. Investigation of the flow pattern in different dust outlet geometries of a gas cyclone by laser doppler anemometry[J]. Powder Technology, 2003, 138(2/3): 239-251.

[18]高翠芝, 孙国刚, 董瑞倩. 旋风分离器旋涡尾端位置的实验测量及其影响因素[J]. 石油学报(石油加工), 2011, 27(6): 952-958.

[19]付烜, 孙国刚, 刘佳, 等. 旋风分离器短路流的估算问题及其数值计算方法的讨论[J]. 化工学报, 2011, 62(9): 2535-2540.

[20]沈聪. 旋风分离器内颗粒返混及再分离的数值模拟研究[D]. 太原: 太原理工大学, 2020.

[21]高翠芝, 孙国刚, 董瑞倩. 排气管对旋风分离器轴向速度分布形态影响的数值模拟[J]. 化工学报, 2010, 61(9): 2409-2416.