ISSN 1008-5548

CN 37-1316/TU

2021年27卷  第4期
<返回第4期

基于CFD-DEM的金属纤维滤网反吹过滤特性研究

Research on back-blowing characteristics of metal fiber filter based on CFD-DEM

彭 涛a, 丁昕越a, 刘雪东a,b, 蒋 威a, 顾宇彤a, 刘梅华a, 朱梓瑞a

(常州大学 a. 机械与轨道交通学院; b. 江苏省绿色过程装备重点实验室, 江苏常州 213164)


DOI:10.13732/j.issn.1008-5548.2021.04.011

收稿日期: 2020-12-18, 修回日期:2021-03-25,在线出版时间:2021-06-03 15:06。

基金项目:中国石油化工集团公司重点研发计划,编号:418020-4。

第一作者简介:彭涛(1996—),男,硕士研究生,研究方向为环保设备及技术。E-mail: 2578266196@qq.com。

通信作者简介:刘雪东(1965—),男,教授,硕士生导师,研究方向为化工装备结构创新与优化、粉体工程设备与技术。E-mail: xdliu_65@126.com。


摘要:为了探究颗粒在金属纤维过滤网内部的反吹过滤特性,根据扫描电镜成像获得的金属纤维滤网内部纤维的微观形貌及排布方式,对金属纤维滤网进行三维重建,并根据其出厂参数建立初始清灰模型;采用CFD-DEM联合仿真的方法,对金属纤维滤网内部的颗粒反吹过程进行数值模拟,研究反吹压力、反吹时间对清灰效果的影响,并对反吹前后颗粒在滤网内的分布情况进行探讨。结果表明:清灰效率随着反吹压力的增大而增大,其增速随着反吹压力的增大而存在着明显的边际递减效应;反吹前颗粒主要集中在近滤网表面处,反吹后在距离滤网表面0.10 mm之内超过94%颗粒被吹除;随着反吹时间的增加,清灰效率先逐渐提高,之后保持稳定,反吹时间只有在一定范围内会影响纤维滤网的清灰效果,反吹压力越大,达到平衡清灰效率所需要的反吹时间越短;对于孔隙率为74.8%、容尘量为3.85 mg/cm2的金属滤网,当反吹压力为1 900 Pa、反吹时间为80 ms时,清灰效果最好。

关键词:金属纤维过滤网;反吹压力;反吹时间;清灰效率;CFD-DEM联合仿真

Abstract:In order to investigate the back-blowing filtration characteristics of particles inside the metal fiber filter,three-dimensional reconstruction of the metal fiber filter was carried out according to the microscopic morphology and arrangement mode of the inner fiber obtained by scanning electron microscopy( SEM) and the initial dust removal model was established according to its factory parameters. CFD-DEM co-simulation method was used to simulate the particle back-blowing process inside the metal fiber filter. The influence of back blowing pressure and back blowing time on the effect of dust removal was studied and the distribution of particles in the filter screen before and after back blowing was discussed. The results show that the cleaning efficiency increases with the increase of the back-blowing pressure,and its growth rate has a significant marginal decreasing effect with the increase of the back-blowing pressure. Before the back-blowing,the particles are mainly concentrated near the surface of filter screen. After back-blowing,more than 94% of particles are blown away within 0. 10 mm from the surface of filter screen. With the increase of the back-blowing time,the cleaning efficiency will increase first and then remain stable,the back-blowing time will only affect the cleaning effect of the fiber filter within a certain range. The higher the back-blowing pressure is,the shorter the back-blowing time is required to reach the equilibrium cleaning efficiency. For the metal filter screen with porosity of 74. 8% and dust holding capacity of 3. 85 mg/cm2,the cleaning effect is the best when the back-blowing pressure is 1 900 Pa and the back-blowing time is 80 ms.

Keywords:metal fiber filter; back-blowing pressure; back-blowing time; dust removal; CFD-DEM co-simulation


参考文献(References):

[1]任玲, 袁娜, 林龙沅. 多孔喷吹气流偏斜对滤筒清灰性能的影响[J]. 中国粉体技术, 2021, 27(1): 58-64.

[2]陈拼, 刘泽华, 刘剑桥, 等. 无纺布纤维汽车过滤器过滤效率及阻力特性研究[J]. 流体机械, 2019, 47(9): 27-32.

[3]赵海龙. 速差射流引流型脉冲喷吹清灰过程的数值模拟[D]. 上海: 东华大学, 2011.

[4]PEREIRA T W C, MARQUES F B, PEREIRA F A R, et al. The influence of the fabric filter layout of in a flow mass filtrate[J]. Journal of Cleaner Production, 2016, 111: 117-124.

[5]万凯迪, 王智化, 胡利华, 等. 袋式除尘器脉冲喷吹清灰过程的数值模拟[J]. 中国电机工程学报, 2014, 34(23): 3970-3976.

[6]张景霞, 沈恒根, 方爱民, 等. 袋式除尘器喷吹管内气流数值模拟分析[J]. 电力环境保护, 2008, 24(3): 30-32.

[7]YAN C P, LIU G J, CHEN H Y. Effect of induced airflow on the surface static pressure of pleated fabric filter cartridges during pulse jet cleaning[J]. Powder Technology, 2013, 249: 424-430.

[8]HUMPHRIES W, MADDEN J J. Fabric filtration for coal-fired boilers: nature of fabric failures in pulse-jet filters[J]. Filtration andSeparation, 1983, 20(1): 40-42.

[9]胥海伦, 周苗苗, 张情, 等. 开口散射器对滤筒除尘脉冲清灰效果的影响[J]. 环境工程学报, 2017, 11(8): 4647-4652.

[10]安蓉蓉, 刘雪东, 刘文明, 等. 金属纤维袋式除尘器内部气流场均匀性分析[J]. 中国粉体技术, 2020, 26(3): 22-30.

[11]秦文茜, 张明星, 康彦, 等. 脉冲喷吹金属滤袋的压力分布影响因素分析[J]. 环境工程学报, 2020, 14(2): 465-472.

[12]BLAIS B, BERTRAND O, FRADETTE L, et al. CFD-DEM simulations of early turbulent solid-liquid mixing: prediction of suspension curve and just-suspended speed[J]. Chemical Engineering Research and Design, 2017, 123: 388-406.

[13]WU H, GUI N, YANG X T, et al. Numerical simulation of heat transfer in packed pebble beds:CFD-DEM coupled with particle thermal radiation[J]. International Journal of Heat and Mass Transfer, 2017, 110: 393-405.

[14]GAO X, LI T W, SARKAR A, et al. Development and validation of an enhanced filtered drag model for simulating gas-solid fluidization of geldart a particles in all flow regimes[J]. Chemical Engineering Science, 2018, 184: 33-51.

[15]LIU X D, DING X Y, CHEN C, et al. Investigating the filtration behavior of metal fiber felt using CFD-DEM simulation[J]. Engineering Applications of Computational Fluid Mechanics, 2019, 13(1): 426-437.

[16]丁启圣, 王维一. 新型实用过滤技术[M]. 北京: 冶金工业出版社, 2011.