ISSN 1008-5548

CN 37-1316/TU

2021年27卷  第4期
<返回第4期

锰基吸附剂的制备及其吸附性能

Preparation of Mn-based adsorbents and its adsorption performance

许泽华1, 何家俊1, 戴镇坛1, 李永峰1, 2, 窦永深2, 刘三毛2

(1. 广东工业大学轻工化工学院, 广东广州 510006;2. 佛山市顺德区金磊环保科技有限公司, 广东佛山 528308)


DOI:10.13732/j.issn.1008-5548.2021.04.005

收稿日期: 2020-12-31, 修回日期:2021-03-16,在线出版时间:2021-06-02 16:54。

基金项目:国家自然科学基金项目,编号:51678160;广州市科技计划项目,编号:201704020202;广东省企业科技特派员项目,编号:GDKTP2020022300。

第一作者简介:许泽华(1995—),女,硕士研究生,研究方向为挥发性有机物净化治理。E-mail: 1084881533@qq.com。

通信作者简介:李永峰(1976—),男,博士,教授,硕士生导师,研究方向为大气污染控制化学。E-mail: gdliyf@gdut.edu.cn。


摘要:以锰氧化物为主吸附材料,碱式碳酸镁为造孔剂,甲基纤维素为胶黏剂,硅溶胶为结构助剂,采用挤条法制备锰基吸附剂;对挥发性有机物饱和吸附容量进行测试,探讨配方体系、碱式碳酸镁的质量分数、热处理温度对锰基吸附剂吸附性能的影响,确定最优制备工艺条件,并进行了多次再生和重复使用效果测评,最后与商用活性炭等吸附剂进行了吸附性能的比较分析。结果表明:造孔剂碱式碳酸镁的最佳质量分数为43%,最优热处理温度为400℃;最优制备工艺条件下制备的锰基吸附剂产品对甲苯和甲醛的饱和吸附容量分别达到0.42、0.44 g/g;经多次再生和重复使用的甲苯吸附容量能维持在(0.42±0.01) g/g;与活性炭相比,自制锰基吸附剂具有更多大粒径尺寸的介孔结构,吸附能力更强;在25~800℃温度范围内无明显放热和失质量现象,表现出良好耐热稳定性,使用过程中的安全性更好。

关键词:锰氧化物;吸附剂;挥发性有机物

Abstract:Using manganese oxide as main adsorption material,magnesium carbonate hydroxide as pore-making agent,methyl cellulose as adhesiveand silica sol as structure promoter,Mn-based adsorbents were prepared by extrusion method. After testing the saturated adsorption capacity of volatile organic compounds,and discussing the influence of formula system,mass fraction of basic magnesium carbonate and heat treatment temperature on the adsorption performance of manganese-based adsorbent,the optimal preparation process conditions were determined. The repeated use tests were assessed and the comparison with the commercial activated carbon adsorbents in adsorption performance was also evaluated. The results show that the optimal mass content of magnesium carbonate hydroxide is 43% and the optimal thermal heating temperature is 400 ℃. The obtained optimal Mn-based adsorbent exhibits the saturated adsorption capacity of 0. 42 g/g and 0. 44 g/g for toluene and formaldehyde respectively,remainingthe toluene adsorption capacity of( 0. 42 ± 0. 01) g/g in the repeated use test. Compared with the activated carbon adsorbent,the obtained Mn-based adsorbent has more large-size mesopores that are suitable for the adsorption of volatile organic compounds. Meanwhile,the Mn-based adsorbent has no obvious heat release and mass loss in the temperature range of 25~800 ℃,indicating better thermal stability and greater product security.

Keywords:manganese oxide; adsorbent; volatile organic compounds


参考文献(References):

[1]MOZAFFAR A, ZHANG Y L. Atmospheric volatile organic compounds (VOCs) in China: a review[J]. Current Pollution Reports, 2020, 6(3): 250-263.

[2]HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568.

[3]SINGLETON R, SALKOSKI A J, BULKOW L, et al. Housing characteristics and indoor air quality in households of Alaska Native children with chronic lung conditions[J]. Indoor Air, 2017, 27(2): 478-486.

[4]孟凡飞, 王海波, 刘志禹, 等. 工业挥发性有机物处理技术分析与展望[J]. 化工环保, 2019, 39(4): 387-395.

[5]ZHANG X, GAO B, CREAMER AE, et al. Adsorption of VOCs onto engineered carbon materials: a review[J]. Journal of Hazard Mater, 2017, 338(9): 102-123.

[6]DONG X A, CUI W, WANG H, et al. Promoting ring-opening efficiency for suppressing toxic intermediates during photocatalytic toluene degradation via surface oxygen vacancies[J]. Science Bulletin, 2019, 64(10): 669-678.

[7]YANG CT, MIAO G, PI YH, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: a review[J]. Chemical Engineering Journal, 2019, 370(8): 1128-1153.

[8]宋磊, 王春颖, 陈虹霖, 等. 不同孔结构对活性炭动态吸附高浓度甲苯的影响 [J]. 环境工程学报, 2017, 11(1): 457-464.

[9]李平, 尤飞, 周慧婷, 等. 煤质粉末活性炭自燃和热稳定性分析[J]. 安全与环境学报, 2017, 17(2): 435-439.

[10]王浩, 任红威, 张金锋, 等. 活性炭粉体燃爆特性实验研究[J]. 消防科学与技术, 2018, 37(10): 1301-1303.

[11]ZHANG H P, WU A B, FU H Y, et al. Efficient removal of Pb(Ⅱ) ions using manganese oxides: the role of crystal structure[J]. RSC Advances, 2017, 7(65): 41228-41240.

[12]DINH V-P, LE N C, TUYEN L A, et al. Insight into adsorption mechanism of lead(Ⅱ) from aqueous solution by chitosan loaded MnO2 nanoparticles[J]. Materials Chemistry and Physics, 2018, 207: 294-302.

[13]HU X H, ZHANG F S, WANG H, et al. Synthesis of MnO2 hollow nanospheres through selective etching method as an effective absorbent to remove methyl orange from aqueous solution[J]. Journal of Nanomaterials, 2019, 2019(1): 1-12.

[14]HE Y, JIANG B, CHEN J, et al. Synthesis of MnO2 nanosheets on montmorillonite for oxidative degradation and adsorption of methylene blue[J]. Journal of Colloid and Interface Science, 2018, 510: 207-220.

[15]SAINI V K, PIRES J. Synthesis of foam-shaped nanoporouszeolite material: a simple template-based method[J]. Journal of Chemical Education, 2011, 89(2): 276-279.

[16]HAURIE L, FERNANDEZ A I, VELASCO J I, et al. Effects of milling on the thermal stability of synthetic hydromagnesite[J]. Materials Research Bulletin, 2006, 42(6): 1010-1018.

[17]BOTHA A, STRYDOM C A. DTA and FT-IR analysis of the rehydration of basic magnesium magnesium carbonate[J]. Journal of Thermal Analysis and Calorimetry, 2003, 71(3): 987-996.

[18]ATRIBAK I, BUENO-L

PEZ A,GARC

A-GARC

A, et al. Catalytic activity for soot combustion of birnessite and cryptomelane[J]. Applied Catalysis B: Environmental, 2009, 93(3/4): 267-273.

[19]BIRKNER N, NAVROTSKY A. Thermodynamics of manganese oxides: sodium, potassium, and calcium birnessite and cryptomelane[J]. Proceedings of the National Academy of Sciences, 2017, 114(7): 1046-1053.