张嘉文, 刘俊怀, 何 惠, 刘 意, 何玉琴, 张 红, 吴庆定
(中南林业科技大学材料成形研究所, 湖南长沙 410004)
DOI:10.13732/j.issn.1008-5548.2021.04.004
收稿日期: 2020-12-15, 修回日期:2021-04-03,在线出版时间:2021-06-03 14:21。
基金项目:湖南省重点领域研发计划项目,编号:2019GK2244;湖南省自然科学基金/常德市联合基金项目,编号:2020JJ6065。
第一作者简介:张嘉文(1995—),女,硕士研究生,研究方向为新型生物质建材。E-mail: 576792476@qq.com。
通信作者简介:吴庆定(1963—),男,博士,教授,博士生导师,研究方向为生物质材料成形理论与技术。E-mail: wudingle@126.com。
摘要:为拓展苎麻资源的高值清洁利用,以苎麻骨粉末为基材,以纳米氧化铜和环氧树脂粉末为强化因子,通过温压成形法制备苎麻骨基复合材料;采用响应面试验设计方法,优化成形工艺参数与强化因子;借助锥形量热仪与扫描电镜等研究苎麻骨基复合材料的阻燃抑烟特性。结果表明,苎麻骨基复合材料的最优工艺参数与最佳强化因子分别为:成形温度为180℃,成形压力为70 MPa,保温保压时间为30 min,环氧树脂质量分数为9.2%,纳米氧化铜质量分数为30.8%;制备的苎麻骨基复合材料强度高、疏水性好,静曲强度高达90.12 MPa,吸水率仅为0.51%;苎麻骨基复合材料具有延迟着火、迟缓火焰扩散、抑制燃烧热释放、抑制烟气释放的能力;其燃烧残余物炭层结构紧凑、致密,可以有效抑制炭层的爆裂。
关键词:苎麻骨基复合材料;阻燃抑烟特性;响应面试验设计法;工艺参数;强化因子
Abstract:In order to expand the high-value clean utilization of ramie resources,the ramie bone-based composite materials were prepared by warm pressing method with ramie bone powder as base material,as well as nano-copper oxide and epoxy resin powder as strengthening factors. The forming process parameters and strengthening factors were optimized by response surface design method. With the help of cone calorimeter and scanning electron microscope,flame retardant and smoke suppressive characteristics of ramie bone-based composites were studied. The results show that the optimal process parameters and strengthening factors of ramie bone-based composites are as follows: forming temperature is 180 ℃,forming pressure is 70 MPa,holding time of heat preservation and pressure is 30 min,mass fraction of epoxy resin is 9. 2%,mass fraction of nano-copper oxide is 30. 8%. Ramie bone-based composite materials have the ability to delay ignition,slow flame diffusion,inhibit combustion heat release,and inhibit smoke release. The structure of the residual carbon layer is compact and compact,which can effectively restrain the bursting of the carbon layer.
Keywords:ramie bone-based composite; flame retardant and smoke suppression characteristics; response surface test design method; process parameter; strengthening factor
参考文献(References):
[1]贾伟涛, 吕素莲, 林康祺, 等. 高生物量经济植物修复重金属污染土壤研究进展[J]. 生物工程学报, 2020, 36(3): 416-425.
[2]吴庆定, 夏余平, 赵橄培. 廉价碳汇资源高值清洁利用技术[M]. 北京: 中国林业出版社, 2019.
[3]祝荻. 生态型苎麻麻杆活性炭的制备、表征与吸油性能测定[D]. 武汉: 武汉纺织大学, 2011.
[4]CAMPOSO P A, MENEZES L A. Ballistic performance of ramie fabric reinforcing graphene oxide-incorporated epoxy matrix composite[J]. Polymers, 2020, 12(11): 2711.
[5]CHAUDHURI S R, GOGOI M, BISWAS T, et al. Optimization of bio-chemical degumming of ramie fiber for improved strength and luster[J]. Biotechnology Reports, 2020, 28(15): 00532.
[6]徐小乐, 王燕, 曾庆福, 等. 苎麻骨纤维素提取及微晶纤维素制备工艺研究[J]. 武汉纺织大学学报, 2013, 26(3): 1-5.
[7]FU B, LI X G, YUAN G M, et al. Preparation and flame retardant and smoke suppression properties of bamboo-wood hybrid scrimber filled with calcium and magnesium nanoparticles[J]. Journal of Nanomaterials, 2014(3): 959135.
[8]李任. 阻燃重组竹的制备工艺与燃烧特性研究[D]. 杭州: 浙江农林大学, 2014.
[9]杨守生, 陈峰. 木材燃烧产烟特性研究[J]. 消防技术与产品信息, 2000(12): 23-26.
[10]刘俊怀. 纳米增强金属化木质功能材料的制备与表征[D]. 长沙: 中南林业科技大学, 2020.
[11]KABASI S, ROY A, CHAKRABORTY S. A generalized moving least square-based response surface method for efficient reliability analysis of structure[J]. Structural and Multidisciplinary Optimization, 2021(63): 1085-1097.
[12]PINHEIRO C, RIOS S, FONSECA A V, et al. Application of the response surface method to optimize alkali activated cements based on low-reactivity ladle furnace slag[J]. Construction and Building Materials, 2020, 264: 120271.
[13]胡智清, 吴庆定, 梁盛. 芦苇秆粉末高密度材料无胶温压成形与表征[J]. 中国粉体技术, 2012, 18(5): 53-60.
[14]ILHAM A W, RUDI S, WAHYONO S, et al. Optimizing warm compaction parameters on the porosity and hardness of bronze/tin ore waste composites[J]. IOP Conference Series: Materials Science and Engineering, 2019, 494(1): 012101.
[15]JIN E, CHUNGY J, XIAO Z, et al. Fire risk assessment of cypress wood coated with metal oxide and metal silicate flame retardant using cone calorimeter[J]. Journal of Fire Sciences, 2020, 38(6): 504-521.
[16]王康, 刘运传, 孟祥艳, 等. 锥形量热仪测量材料热释放速率的影响因素分析[J]. 消防科学与技术, 2018, 37(4): 449-452.
[17]LIANG D X, ZHU X J, DAI P, et al. Preparation of a novel lignin-based flame retardant for epoxy resin[J]. Materials Chemistry and Physics, 2021, 259(17): 124101.
[18]杨鑫. 木质素/木粉/高密度聚乙烯复合材料阻燃性能的研究[D]. 哈尔滨: 东北林业大学, 2020.
[19]SALASINSKA K, MIZERA K, CELI
SKI M, et al. Thermal properties and fire behavior of polyethylene with a mixture of copper phosphate and melamine phosphate as a novel flame retardant[J]. Fire Safety Journal, 2020, 115: 103137.