申 健, 李 丽, 段广彬
(济南大学材料科学与工程学院, 山东济南250022)
DOI:10.13732/j.issn.1008-5548.2021.05.017
收稿日期: 2021-05-24,修回日期:2021-06-11,在线出版时间:2021-08-17 16:22。
基金项目:国家自然科学基金项目,编号:51501072。
第一作者简介:申健(1997—),男,硕士研究生,研究方向为材料科学与工程。E-mail:mse_shenjian@163.com。
通信作者简介:
李丽(1986—),女,博士,讲师,硕士生导师,研究方向为新能源材料与化学电源。E-mail:mse_lil@ujn.edu.cn。
段广彬(1983—),男,博士,教授,硕士生导师,研究方向为材料科学与工程。E-mail:mse_duangb@ujn.edu.cn。
摘要:综述二维(2D)层状材料(MXene)的特性和零维(0D)、一维(1D)、2D等不同尺寸的活性材料的特点;总结Ti3C2Tx基-0D、Ti3C2Tx基-1D、Ti3C2Tx基-2D以及Ti3C2Tx过渡金属氧化物、Ti3C2Tx-Fe氧化物、Ti3C2Tx-Co磷化物等其他纳米材料的制备和性能。认为Ti3C2Tx作为活性材料,具有导电衬底甚至集流体的作用,其快速的离子或电子转移通道和结构稳定性的特点在混合电极中有巨大的应用潜力。提出可以通过合成结构可控的Ti3C2Tx微纳结构以及在其表面修饰不同的官能团等方法,以暴露更多的活性位点,提高离子或电子转移能力和结构稳定性;应克服由于Ti3C2Tx表面含有的氧官能团导致其发生降解反应,最终导致电池性能下降的问题;先进的原位表征手段可以在电池充放电过程中动态的记录电极及电解液的各种实时信息,便于研究SEI膜的形成和电极材料的体积膨胀;加强对软包电池性能的研究是Ti3C2Tx基负极材料能否商业化的关键。
关键词:Ti3C2Tx;纳米复合材料;负极;锂离子电池
Abstract:The properties of 2D layered materials (MXene) and active materials with different sizes,such as zero dimensional(0D),one dimensional (1D) and two dimensional (2D),were reviewed.Preparation and properties of the Ti3C2Tx-based-0D,Ti3C2Tx-based-1D,Ti3C2Tx-based-2D,and other nanomaterials such as Ti3C2Tx-excessive metal oxides,Ti3C2Tx-Fe oxides,and Ti3C2Tx-Co phosphides,were summarized.It is considered that Ti3C2Tx,as an active material,has the function of conducting substrate and even collecting fluid,and its characteristics such as rapid ion or electron transfer channel and structural stability have great potential for application in hybrid electrodes.By synthesizing controllable Ti3C2Tx micro-nano structure and modifying different functional groups on its surface,it is proposed that more active sites can be exposed to improve the ability of ion or electron transfer and structural stability.The degradation reaction of Ti3C2Tx due to the oxygen functional groups on the surface of the Ti3C2Tx should be overcome,which eventually leads to the degradation of the battery performance.Advanced in-situ characterization means can dynamically record various real-time information of electrode and electrolyte during battery charging and discharging,which is convenient to study the formation of SEI film and the volume expansion of electrode material.The key to commercialization of Ti3C2Tx based anode materials is to strengthen the research on the performance of soft-pack batteries.
Keywords:Ti3C2Tx; anode; lithium ion battery; nanocomposite
参考文献(References):
[1]WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4301.
[2]MILLER J R, SIMON P. Electrochemical capacitors for energy management[J]. Science, 2008, 321(5889): 651-652.
[3]DUBAL D P, AYYAD O, RUIZ V, et al. Hybrid energy storage: the merging of battery and supercapacitor chemistries[J]. Chemical Society Reviews, 2015, 44(7): 1777-1790.
[4]ASLAM M, SHAH S, LI S, et al. Kinetically controlled synthesis of MOF nanostructures: single-holed hollow core-shell ZnCoS@Co9S8/NC for ultra-high performance lithium-ion batteries[J]. Journal of Materrials Chemistry, 2018, 6(29): 14083-14090.
[5]ZU C X, HONG L. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science, 2011, 4(8): 2614-2624.
[6]GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: aperspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
[7]TARASCON J M. Is lithium the new gold?[J]. Nature Chemistry, 2010, 2(6): 510.
[8]ZHANG W, LIU Y, GUO Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering[J]. Science Advances, 2019, 5(5): 7412.
[9]XIAO N, MCCULLOCH W D, WU Y. Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries[J]. Journal of the American Chemical Society, 2017, 139(28): 9475-9478.
[10]GOGOTSI Y, ANASORI B. The rise of MXenes[J]. ACS Nano, 2019, 13(8): 8491-8494.
[11]HART J L, HANTANASIRISAKUL K, LANG A C, et al. Control of MXenes’ electronic properties through termination and intercalation[J]. Nature Communications, 2019, 10(1): 1-10.
[12]ZHANG C, NICOLOSI V. Graphene and MXene-based transparent conductive electrodes and supercapacitors[J]. Energy Storage Materials, 2019, 16(1): 102-125.
[13]ANASORI B, LUHATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2): 16098.
[14]LING Z, REN C E, ZHAO M Q , et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. Proceedings of the National Academy of Science, 2014, 111(47): 16676-81.
[15]GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81.
[16]ZHAO M Q, XIE X, REN C E, et al. Hollow MXenes pheres and 3D macroporous MXene frameworks for Na-ion storage[J]. Advanced Materials, 2017, 29(37): 1702410.
[17]WANG Z W, KIM H, ALSHAREEF H N. Oxide thin-film electronics using all-MXene electrical contacts[J]. Advanced Materials, 2018, 30(15): 1706656.
[18]ZHANG C F, ANASORI B, SERAL-ASCASO A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance[J]. Advanced Materials, 2017, 36(29): 1702678.
[19]QIU J, KURRA N, ALHABEB M, et al. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors[J]. Advanced Energy Materials, 20188(13): 1703043.
[20]NARENDRA K, MOHAMED A, KATHLEEN M, et al. Bistackedtitanium carbide (MXene) anodes for hybrid sodium ion capacitors[J]. Acs Energy Letters, 2018, 3(9): 2094-2100.
[21]CHENG Z, MICHAEL N, MARIA L, et al. Understanding the MXene pseudo capacitance[J]. Journal of Physical Chemistry Letters, 2018, 9(6): 1223-1228.
[22]YU Z N,TETARD L, ZHAI L, et al. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions[J]. Energyand Environmental Science, 2015, 8(3): 702-730.
[23]ZOU G, ZHANG Z, GUO J, et al. Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates[J]. ACS Applied Materials and Interfaces, 2016, 8(34): 22280-22286.
[24]LI L, JIANG G, AN C, et al. Hierarchical Ti3C2@TiO2 MXene hybrids with tunable interlayer distance for highly durable lithium-ion batteries[J]. Nanoscale, 2020, 12(18): 10369-10379.
[25]CHEN H, KE G, WU X, et al. Amorphous MoS3 decoration on 2D functionalized MXene as a bifunctional electrode for stable and robust lithium storage[J]. Chemical Engineering Journal, 2020, 406:126775.
[26]WANG L B, HE Y, LIU D R, et al. SnO2 quantum dots interspersed d-Ti3C2Tx MXeneheterostructure with enhanced performance for lithium ion battery[J]. Journal of The Electrochemical Society, 2020, 167(11): 116522.
[27]SUN X, LIU Y, ZHANG J Y, et al. Facile construction of ultrathin SnOx nanosheets decorated MXene (Ti3C2) nanocomposite towards Li-ion batteries as high performance anode materials[J]. Electrochimica Acta, 2019, 295: 237-245.
[28]XUE C, HE Y, LIU Y, et al.Controlled synthesis of alkalized Ti3C2 MXene-supported β-FeOOH nanoparticles as anodes for lithium-ionbatteries[J]. Ionics, 2019, 25(2): 3069-3077.
[29]HUI X B, ZHAO R Z, ZANG P. Low-temperature reduction strategy synthesized Si/Ti3C2 MXene composite anodes for high-performance Li-ion batteries[J]. Advanced Energy Materrials, 2019, 9(33): 1901065.
[30]LIU Y, WANG W, YING Y L, et al. Binder-free layered Ti3C2/CNTs nanocomposite anodes with enhanced capacity and long-cycle life for lithium-ion batteries[J]. Dalton Transactions, 2015, 44(16): 7126-7126.
[31]LIN Z Y, SUN D F, HUANG Q, et al. Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(27): 14096-14100.
[32]NAM S, UMRAO S, OH S, et al. Sonochemical self-growth of functionalized titanium carbide nanorods on nanosheets for high capacity anode for lithium-ion batteries[J]. Composites, 2020, 181: 107583
[33]ER D, LI J, NAGUIB M , et al. MXenes as high capacity electrode materials for metal (Li, Na, K, Ca)-ion batteries[J]. ACS Appl Mater Interfaces, 2014, 6(14): 11173-11179.
[34]KIM D W, SHIIBA H, ZETTSU N, et al. Full picture discovery for mixed-fluorine anion effects on high-voltage spinel lithium nickel manganese oxide cathodes[J]. Npg Asia Materials, 2017, 9(7): e398.
[35]LV W J, ZHU J F, WANG F, et al. Facile synthesis and electrochemical performance of TiO2 nanowires/Ti3C2 composite[J]. Journal of Materials Science Materials in Electronics, 2018, 29: 4881-4887.
[36]ZHANG X, XIEY. Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies[J]. Chemical Society Reviews, 2013, 42(21): 8187-8199.
[37]HIRSCH A, HAUKE F. Post-Graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization[J]. AngewandteChemie-Internationnal Edition, 2018,57(16): 4338-4354.
[38]ZHANG X Y, LV R J, WANG A X, et al. MXene aerogel scaffolds for high rate lithium metal anodes[J]. Angewandte Chemie International Edition, 2018, 57(46): 15028-15033.
[39]LIU Y J, HE Y, VARGUN E, et al. 3D porous Ti3C2 MXene/NiCo-MOF composites for enhanced lithium storage[J]. Nanomaterials, 2020, 10(4): 695.
[40]ZHANG R, XUE Z, QIN J Q, et al. NiCo-LDH/Ti3C2 MXene hybrid materials for lithium ion battery with high-rate capability and long cycle life[J]. Journal of Energy Chemistry, 2020, 50: 143-153.
[41]ZHANG N, HAN X P, LIU Y C, er al. 3D Porous gamma-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries[J]. Advanced Energy Materials, 2014, 5(5): 1401123.
[42]GUO W X, SUN WW, LV L P, et al. Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage[J]. ACS Nano, 2017, 11(4):4198-4205.
[43]YANG Y X, LIU Y F, PU K C, et al. Highly stable cycling of zmorphous Li2CO3-coated alpha-Fe2O3 nanocrystallinesprepared via a new mechanochemical strategy for Li-ion batteries[J]. Advanced Functional Materials, 2017,27(3): 1605011.
[44]LIU B Q, ZHANG Q, JIN Z S, et al. Uniform pomegranate-like nanoclusters organized by ultrafine transition metal oxide@nitrogen-dopedcarbon subunits with enhanced lithium storage properties[J]. Advanced Energy Materials, 2018, 8(7): 1702347.
[45]LIANG J M, ZHOU Z , ZHANG Q C, et al. Chemically-confined mesoporous γ-Fe2O3 nanospheres with Ti3C2Tx MXene via alkali treatment for enhanced lithium storage[J]. Journal of Power Sources, 2021, 495: 229758.
[46]ZONG H, HU L, WANG Z G, et al. Metal-organic frameworks-derived CoP anchored on MXene toward an efficient bifunctional electrode with enhanced lithium storage[J]. Chemical Engineering Journal, 2021, 416(12):129102.