ISSN 1008-5548

CN 37-1316/TU

2021年27卷  第5期
<返回第5期

亲油性纳米HgSe的合成与反应机理

Synthesis and characterization of lipophilic HgSe nanoparticles

吴首昂, 刘 番, 龚兴厚

(湖北省绿色轻工材料重点实验室, 绿色轻质材料与加工协同创新中心, 湖北武汉430068;湖北工业大学材料与化学工程学院, 湖北武汉430068)


DOI:10.13732/j.issn.1008-5548.2021.05.016

收稿日期: 2020-11-26,修回日期:2021-01-24,在线出版时间:2021-08-17 10:00。

基金项目:国家自然科学基金项目,编号:51173039。

第一作者简介:吴首昂(1993—),男,硕士研究生,研究方向为纳米材料。E-mail: 508504665@qq.com。

通信作者简介:龚兴厚(1974—),男,博士,教授,硕士生导师,研究方向为功能高分子材料。E-mail: xinghoug@foxmail.com。


摘要:为了解决合成纳米HgSe的工艺存在的试剂昂贵、合成条件苛刻等问题,采用有机金属合成法,利用常规试剂,成功制备出油酸修饰的纳米HgSe。X射线衍射分析结果证实纳米HgSe为纯相的立方结构;透射电镜结果显示,产物粒径为7 nm左右且分散性良好;紫外-可见-红外吸收光谱测试产物在2 900 nm处存在强的吸收。结合文献考察三正辛基膦(TOP)对纳米HgSe产量的影响,详细探讨纳米HgSe合成的反应机理。

关键词:红外探测器;有机金属合成法;硒化汞;三正辛基膦

Abstract:In onder to solve the problem,such as expensive reagent and harsh synthesis conditions in the process of synthetize nano selenide mercury( nano-HgSe),we have successfully prepared oleic acid modified colloidal nano HgSe using common reagent by organometallic synthesis,and the results of X-ray diffractionanalysis( XRD) confirmed that the HgSe nanoparticles was a pure cubic structure; The results of transimission electronic microscopy showed that the particle size of the product was about7 nm and dispersion was good. The UV-Vis-IR absorption spectrum showed that the product had strong absorption at 2 900 nm.In addition,the effect of tri-n-octylphosphine( TOP) on the yield of nano-HgSecombined with literature was researched,and the reaction mechanism of nano-HgSe synthesis was discussed in detail.

Keywords:infrared detectors; organometallic synthesis; selenide mercury; ari-n-octylphosphine


参考文献(References):

[1]ALBA I M, OLAYA A G, DIEGO B R, et al. Simple and rapid electrochemical quantification of water-stabilized HgSe nanoparticles of great concern in environmental studies[J]. Talanta, 2019, 200: 72-77.

[2]郭治平, 刘翔, 潘顺臣, 等. Hg1-xCdxSe红外薄膜材料研究进展[J]. 材料导报, 2016, 30(7): 6-42.

[3]栾庆彬, 皮孝东. 半导体纳米晶体在薄膜晶体管中的应用[J]. 材料导报, 2014, 20(11): 1-7.

[4]DUZ I, OZDEMIR K S, ERDEM I, et al. DFT study on phase transition behavior and mechanical properties of HgSe polymorphs under high pressure[J]. Current Applied Physics, 2018, 18(4): 424-436.

[5]ESMAEILI Z M, SALAVATI N M, SOBHANI A. Sonochemical synthesis of HgSe nanoparticles: effect of metal salt, reaction time and reductant agent[J]. Journal of Industrial and Engineering Chemistry, 2014, 20 (5): 3518-3523.

[6]STEPHEN V K, ANDREO S S, ROGACH A L. Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties[J]. Chemical Society Reviews, 2013, 42(7): 3033-3087.

[7]LIVACHE C, MARTINEZ B, ROBIN A, et al. Investigation of the self-doping process in HgSe nanocrystals[J]. Physica Status Solidi A-Applications and Materials Science, 2018, 215(3): 1-6.

[8]LHUILLIER E, SCARAFAGIO M, HEASE P, et al. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz[J]. Nano Letters, 2016, 16(2): 1282-1286.

[9]YIN L, ZHANG D, WANG D, et al. Size dependent photocatalytic activity of ZnS nanostructures prepared by a facile precipitation method[J]. Materials Science and Engineering B, 2016, 208: 15-21.

[10]LA PORTA F A, NOGUEIRA A E, GRACIA L, et al. An experimental and theoretical investigation on the optical and photocatalytic properties of ZnS nanoparticles[J]. Journal of Physics and Chemistry of Solids, 2017, 103: 179-189.

[11]WANG R, LIANG H, HHONG J, et al. Hydrothermal synthesis of cobalt-doped ZnS for efficient photodegradation of methylene blue[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 325: 62-67.

[12]ACKERMAN M M, XIN T, PHILIPE G S. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors[J]. ACS Nano, 2018, 12(7): 7264-7271.

[13]CAREY G H, ABDELHADY A L, NING Z, et al. Colloidal quantum dot solar cells[J]. Chemical Reviews, 2015, 115(23): 12732-12763.

[14]JAGER M, SHAYEGHI A, KLIPPENSTEIN V, et al. Chemical bonding in initial building blocks of semiconductors: Geometrical structures and optical absorption spectra of isolated

species[J]. The Journal of Chemical Physics, 2018, 149(24): 244308.

[15]AYELE D W, SU W N, CHOU H L, et al. Composition-controlled optical properties of colloidal CdSe quantum dots[J]. Applied Surface Science, 2014, 322: 177-184.

[16]DENG Z, JEONG K S, PHILIPPE G S. Colloidal quantum dots intraband photodetectors[J]. ACS Nano, 2014, 8(11): 11707-11714.

[17]DENG Z, PHILIPPE G S. Intraband luminescence from HgSe/CdS core/shell quantum dots[J]. ACS Nano, 2016, 10(2): 2121-2127.

[18]COSKUN S, AKSOY B, UNALAN H E. Polyol synthesis of silver nanowires: an extensive parametric study[J]. Crystal Growth & Design, 2011, 11(11): 4963-4969.

[19]MHAOHAM M, EBEID K, EBNOU F, et al. Synthesis, characterization, and structures of zinc(Ⅱ) and cadmium(Ⅱ) complexes with phosphoramides bearing cyclic amino groups[J]. Journal of Coordination Chemistry, 2020, 73(3): 453-466.

[20]SATTLER W, PALMER J H, BRIDGES C C, et al. Structural characterization of 1,3-propanedithiols that feature carboxylic acids: homologues of mercury chelating agents[J]. Polyhedron, 2013, 64: 268-279.