王 聪a, 康伟峰a, 张林慧a,b, 徐永鸿a, 仲斌年a,b
(青海大学a. 机械工程学院; b. 青海省新型轻合金重点实验室, 青海西宁810016)
DOI:10.13732/j.issn.1008-5548.2021.05.014
收稿日期: 2021-05-17,修回日期:2021-06-12,在线出版时间:2021-08-17 10:54。
基金项目:青海省自然科学基金青年项目,编号:201-ZJ-957Q。
第一作者简介:王聪(2001—),女,研究方向为碲化物半导体纳米材料。E-mail: wangcong@qhu.edu.cn。
通信作者简介:仲斌年(1988—),男,博士,副教授,研究方向为窄带隙半导体纳米材料及其光电响应性能。E-mail: bnzhong@qhu.edu.cn。
摘要:以碲化铋(Bi2Te3)为研究对象,综述气相合成法、模板电沉积法、溶剂热法、气相传输法、电置换法以及新型的低温双溶剂溶胶-凝胶法等6种典型的制备Bi2Te3纳米材料的方法,总结Bi2Te3纳米材料在光电探测器、太阳能电池和热电发生器等方面的应用;提出低成本、高效、可控的制备Bi2Te3纳米材料是其得到进一步广泛应用的重要前提,认为在之后的研究中,应着重考虑采用降低材料维度或掺杂的方式构建具有高热电优值(ZT)的热电器件,采用异质结的方法构建高光响应性能的光电器件。
关键词:三碲化二铋;纳米材料;半导体;热电器件;光电响应
Abstract:Taking bismuth telluride( Bi2Te3) as the research object,6 typical preparation methods of Bi2Te3 nanomaterials,such as gas-phase synthesis,template electrodeposition,solvothermal,gas phase transfer,electrical displacement and new low-temperature double solvent sol-gel method,were reviewed. The applications of Bi2Te3 nanomaterials in photodetectors,solar cells and thermoelectric generators were summarized. It is proposed that low-cost,efficient and controllable preparation of Bi2Te3 nanomaterials is an important prerequisite for its further application. In the future research,we should focus on reducing the material dimension or doping to build thermoelectric devices with high figure of merit and heterojunction to build optoelectronic devices with high photoresponse performance.
Keywords:bismuth trituride; nanomaterials; semiconductor; thermoelectric device; photoresponse
参考文献(References):
[1]刘雨从. 柔性碲化铋薄膜的制备及其光电性质的研究 [D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2017.
[2]ZHANG H, LIU C X, QI X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442.
[3]HASAN M Z, KANE C L. Colloquium: topological insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067.
[4]WANG Z, WANG F-Q, CHEN H, et al. Synthesis and characterization of Bi2Te3 nanotubes by a hydrothermal method[J]. Journal of Alloys and Compounds, 2010, 492(1/2): L50-L53.
[5]DU Y, CAI K F, CHEN S, et al. Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT:PSS composite films[J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5735-5743.
[6]TANG R Z, WANG Z L, LI W, et al. Bi2Te3 thin films prepared by co-evaporation for CdTe thin film solar cells[J]. Solar Energy Materials and Solar Cells, 2014, 121: 92-98.
[7]CHOI H, JEONG K, CHAE J, et al. Enhancement in thermoelectric properties of Te-embedded Bi2Te3 by preferential phonon scattering in heterostructure interface[J]. Nano Energy, 2018, 47: 374-384.
[8]PRADHAN S K, BARIK R. Observation of the magneto-transport property in a millimeter-long topological insulator Bi2Te3 thin-film Hall bar device[J]. Applied Materials Today, 2017, 7: 55-59.
[9]ZHAO Y, CHANG C Z, JIANG Y, et al. Demonstration of surface transport in a hybrid Bi2Se3/Bi2Te3 heterostructure[J]. Scientific Reports, 2013, 3: 3060.
[10]GEUN KIM B, HYUN BAE S, BYEON J, et al. Stress-induced change of Cu-doped Bi2Te3 thin films for flexible thermoelectric applications[J]. Materials Letters, 2020, 270: 127697.
[11]SAPP S A, LAKSHMI B B, MARTIN C R. Template synthesis of bismuth telluride nanowires[J]. Advanced Materials, 1999, 11(5): 402-404.
[12]WUDIL Y S, GONDAL M A, RAO S G, et al. Substrate temperature-dependent thermoelectric figure of merit of nanocrystalline Bi2Te3 and Bi2Te2.7Se0.3 prepared using pulsed laser deposition supported by DFT study[J]. Ceramics International, 2020, 46(15): 24162-24172.
[13]YANG Y, KUNG S C, TAGGART D K, et al. Synthesis of PbTe nanowire arrays using lithographically patterned nanowire electrodeposition[J]. Nano Letters, 2008, 8(8): 2447-2451.
[14]LIU J L, WANG H, LI X, et al. High performance visible photodetectors based on thin two-dimensional Bi2Te3 nanoplates[J]. Journal of Alloys and Compounds, 2019, 798: 656-664.
[15]WANG G, LOK S K, WONG G K L, et al. Molecular beam epitaxy-grown Bi4Te3 nanowires[J]. Applied Physics Letters, 2009, 95(26): 263102.
[16]TEWELDEBRHAN D, GOYAL V, BALANDIN A A. Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals[J]. Nano Letters, 2010, 10(4): 1209-1218.
[17]HAMDOU B, KIMLING J, DORN A, et al. Thermoelectric characterization of bismuth telluride nanowires, synthesized via catalytic growth and post-annealing[J]. Advanced Materials, 2013, 25(2): 239-244.
[18]JIANG Y, ZHANG X, WANG Y, et al. Vertical/planar growth and surface orientation of Bi2Te3 and Bi2Se3 topological insulator nanoplates[J]. Nano Letters, 2015, 15(5): 3147-3152.
[19]LEI W, MADNI I, REN Y L, et al. Controlled vapour-phase deposition synthesis and growth mechanism of Bi2Te3 nanostructures[J]. Applied Physics Letters, 2016, 109(8): 083106.
[20]PARK D, PARK S, JEONG K, et al. Thermal and electrical conduction of single-crystal Bi2Te3 nanostructures grown using a one step process[J]. Scientific Reports, 2016, 6(1): 19132.
[21]THORAT J B, MOHITE S V, BAGADE A A, et al. Nanocrystalline Bi2Te3 thin films synthesized by electrodeposition method for photoelectrochemical application[J]. Materials Science in Semiconductor Processing, 2018, 79: 119-126.
[22]SONG Y, YOO I J, HEO N R, et al. Electrodeposition of thermoelectric Bi2Te3 thin films with added surfactant[J]. Current Applied Physics, 2015, 15(3): 261-264.
[23]MENKE E J, LI Q, PENNER R M. Bismuth telluride (Bi2Te3) nanowires synthesized by cyclic electrodeposition/stripping coupled with step edge decoration[J]. Nano Letters, 2004, 4(10): 2009-2014.
[24]BISWAS K G, SANDS T D, COLA B A, et al. Thermal conductivity of bismuth telluride nanowire array-epoxy composite[J]. Applied Physics Letters, 2009, 94(22): 223116.
[25]THORAT J B, MOHITE S V, MADAKE S B, et al. Electrochemical and surface deformation studies on electrodeposited nanostructured Bi2Te3 thin films[J]. Optics & Laser Technology, 2019, 113: 384-393.
[26]XIAO F, YOO B, LEE K H, et al. Synthesis of Bi2Te3 nanotubes by galvanic displacement[J]. Journal of the American Chemical Society, 2007, 129(33): 10068-10069.
[27]DANINE A, TERMENTZIDIS K, SCHAEFER S, et al. Synthesis of bismuth telluride nanotubes and their simulated thermal properties[J]. Superlattices and Microstructures, 2018, 122: 587-595.
[28]LIU S, PENG N, BAI Y, et al. General solvothermal approach to synthesize telluride nanotubes for thermoelectric applications[J]. Dalton Transactions, 2017, 46(13): 4174-4181.
[29]REN X, ZHENG W, QIAO H, et al. Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface[J]. Materials Today Energy, 2020, 16: 100401.
[30]YAPRINTSEV M, VASILEV A, IVANOV O, et al. Enhanced thermoelectric efficiency of the bulk composites consisting of “Bi2Te3 matrix” and “filler Ni@NiTe2 inclusions”[J]. Scripta Materialia, 2021, 194: 113710.
[31]JIANG L, ZHU Y J, CUI J B. Nanostructures of metal tellurides (PbTe, CdTe, CoTe2, Bi2Te3, and Cu7Te4) with various morphologies: a general solvothermal synthesis and optical properties[J]. European Journal of Inorganic Chemistry, 2010, 2010(19): 3005-3011.
[32]JU H, KIM M, KIM J. A facile fabrication of n-type Bi2Te3 nanowire/graphene layer-by-layer hybrid structures and their improved thermoelectric performance[J]. Chemical Engineering Journal, 2015, 275: 102-112.
[33]FINEFROCK S W, FANG H, YANG H, et al. Large-scale solution-phase production of Bi2Te3 and PbTe nanowires using Te nanowire templates[J]. Nanoscale, 2014, 6(14): 7872-7876.
[34]LUDWIG T, GUO L, MCCRARY P, et al. Mechanism of bismuth telluride exfoliation in an ionic liquid solvent[J]. Langmuir, 2015, 31(12): 3644-3652.
[35]ZHANG G, KIRK B, JAUREGUI L A, et al. Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties[J]. Nano Letters, 2012, 12(1): 56-60.
[36]LIN Y J, KHAN I, SAHA S, et al. Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nanoplates[J]. Nature Communications, 2021, 12(1): 180.
[37]MASOOD K B, FAROOQ U, SINGH J. Evolution of the structural, dielectric and electrical transport properties of Bi2Te3 nano-sticks synthesized via polyol and solvothermal routes[J]. Physica B: Condensed Matter, 2020, 588: 412183.
[38]SALEEMI M, TOPRAK M S, LI S, et al. Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3)[J]. Journal of Materials Chemistry, 2012, 22(2): 725-730.
[39]IRFAN S, LUO J-T, PING F, et al. Theoretical and experimental investigation of magnetic properties of iodine and cerium Co-doped Bi2Te3 nanoparticles[J]. Journal of Materials Research and Technology, 2020, 9(6): 13893-13901.
[40]HYUN C-M, CHOI J-H, LEE S W, et al. Synthesis of Bi2Te3 single crystals with lateral size up to tens of micrometers by vapor transport and its potential for thermoelectric applications[J]. Crystal Growth & Design, 2019, 19(4): 2024-2029.
[41]PATIL P B, MALI S S, KONDALKAR V V, et al. Bismuth telluride quantum dot assisted titanium oxide microflowers for efficient photoelectrochemical performance[J]. Materials Letters, 2015, 159: 177-181.
[42]XIA D, LIU C, FAN S. A solar thermoelectric conversion material based on Bi2Te3 and carbon nanotube composites[J]. The Journal of Physical Chemistry C, 2014, 118(36): 20826-20831.
[43]YAO J, ZHENG Z, YANG G. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1 550 nm[J]. Journal of Materials Chemistry C, 2016, 4(33): 7831-7840.
[44]ZHU X-G, ZHANG Y, FENG W, et al. Electronic structures of topological insulator Bi2Te3 surfaces with non-conventional terminations[J]. New Journal of Physics, 2016, 18(9): 093015.
[45]IQBAL M W, IQBAL M Z, KHAN M F, et al. Deep-ultraviolet-light-driven reversible doping of WS2 field-effect transistors[J]. Nanoscale, 2015, 7(2): 747-757.
[46]YAO J D, ZHENG Z Q, SHAO J M, et al. Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition[J]. Nanoscale, 2015, 7(36): 14974-14981.
[47]LIU J, LI Y, SONG Y, et al. Bi2Te3 photoconductive detectors on Si[J]. Applied Physics Letters, 2017, 110(14): 141109.
[48]ISLAM S, MISHRA J K, KUMAR A, et al. Ultra-sensitive graphene-bismuth telluride nano-wire hybrids for infrared detection[J]. Nanoscale, 2019, 11(4): 1579-1586.
[49]YAO J, SHAO J, WANG Y, et al. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments[J]. Nanoscale, 2015, 7(29): 12535-12541.
[50]QIAO H, YUAN J, XU Z, et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure[J]. ACS Nano, 2015, 9(2): 1886-1894.
[51]YANG M, WANG J, ZHAO Y, et al. Three-dimensional topological insulator Bi2Te3/organic thin film heterojunction photodetector with fast and wideband response from 450 to 3 500 nanometers[J]. ACS Nano, 2019, 13(1): 755-763.
[52]PANG M Y, LUI H F, LI W S, et al. Characterizations of bismuth telluride/gallium nitride heterojunction photovoltaic detector for MWIR detection under room temperature[J]. Journal of Physics: Conference Series, 2009, 152: 012046.
[53]ZHU H T, LUO J, LIANG J K. Synthesis of highly crystalline Bi2Te3 nanotubes and their enhanced thermoelectric properties[J]. Journal of Materials Chemistry A, 2014, 2(32): 12821-12826.
[54]REEVES R D, CROSSER L A, CHESTER G E, et al. Thermoelectric property enhancement via pore confinement in template grown bismuth telluride nanowire arrays[J]. Nanotechnology, 2017, 28(50): 505401.
[55]TANG X, XIE W, LI H, et al. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure[J]. Applied Physics Letters, 2007, 90(1): 012102.
[56]SCHEELE M, OESCHLER N, MEIER K, et al. Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles[J]. Advanced Functional Materials, 2009, 19(21): 3476-3483.
[57]PRADHAN S, DAS R, BHAR R, et al. A simple fast microwave-assisted synthesis of thermoelectric bismuth telluride nanoparticles from homogeneous reaction-mixture[J]. Journal of Nanoparticle Research, 2017, 19(2): 69.
[58]YAN X, POUDEL B, MA Y, et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3[J]. Nano Lett, 2010, 10(9): 3373-3378.
[59]MI J L, LOCK N, SUN T, et al. Biomolecule-assisted hydrothermal synthesis and self-assembly of Bi2Te3 nanostring-cluster hierarchical structure[J]. ACS Nano, 2010, 4(5): 2523-2530.
[60]SUN Z, LIUFU S, LIU R, et al. A general strategy to bismuth chalcogenide films by chemical vapor transport[J]. Journal of Materials Chemistry, 2011, 21(7): 2351-2355.