彭德其1, 王依然1, 侯家鑫1, 俞天兰2, 吴淑英1, 王志平3
(1. 湘潭大学机械工程学院, 湖南湘潭411105;2. 湖南工业大学机械工程学院, 湖南株洲412007;3. 湘潭锅炉有限责任公司, 湖南湘潭411202)
DOI:10.13732/j.issn.1008-5548.2021.05.012
收稿日期: 2021-02-28,修回日期:2021-04-24,在线出版时间:2021-08-17 10:54。
基金项目:湖南省自然科学基金项目,编号:2018JJ4054;湘潭市科技局计划项目,编号:GX-YB20201011。
第一作者简介:彭德其(1972—),男,教授,博士,研究方向为过程强化与节能环保。E-mail: pengshuaike@163.com。
摘要:为了进一步阐述列管式换热器中椭球形颗粒液固两相流流动机理,基于CFD-DEM耦合方法,模拟分析立式上行换热管内椭球形颗粒长径比β、颗粒体积分数α对颗粒分布和运动特性影响;分析液固两相稳定运动后的相对速度,采用滑移系数对颗粒跟随性演变规律进行量化。结果表明:动态稳定周期内,横截面上颗粒径向分布在任意时刻均相似,且颗粒随流体自下向上运动过程中,颗粒在径向方向上逐渐集中到近壁区域,管中心区域颗粒相对体积分数较小;椭球形颗粒滑移系数均大于球形颗粒的,当β=1.5时,椭球形颗粒滑移系数最大。
关键词:液固两相流;椭球形颗粒;分布特性;运动特性;CFD-DEM耦合方法;滑移系数
Abstract:In order to explain the liquid-solid two-phase flow mechanism of ellipsoidal particles in the tubular heat exchanger,based on the CFD-DEM coupling method,the effect of the length-diameter ratio β and the particle volume fraction α of the ellipsoid particles on the particle distribution and motion characteristics were simulated and analyzed in the vertical upward heat transfer tube. The relative velocities of liquid-solid two phases after stable motion were analyzed,and the slip coefficient was used to quantify the evolution of the particle following. The results show that the radial distribution of particles on the cross section is similar at any time during the dynamic stability period,and when the particles move from bottom to top with the fluid,they slowly approach the wall in the radial direction of the tube,and the relative particle volume fraction in the center of the tube become lower. The slip coefficient of ellipsoidal particles is greater than that of spherical particles,when β is 1. 5,the slip coefficient of ellipsoidal particles reaches the greatest.
Keywords:liquid-solid two-phase flow; ellipsoidal particles; distribution characteristics; movement characteristics; CFD-DEM coupling method; slip coefficient
参考文献(References):
[1]ZHU H P, ZHOU Z Y, YANG R Y, et al. Discrete particle simulation of particulate systems: a review of major applications and findings[J]. Chemical Engineering Science, 2008, 63(23): 5728-5770.
[2]KERST K, ROLOFF C, SOULA L G, et al. CFD-DEM simulations of a fluidized bed crystallizer[J]. Chemical Engineering Science, 2017, 165(40): 1-13.
[3]WANG S, WANG X, WANG R, et al. Simulations of flow behavior of particles in a liquid-solid fluidized bed using a second-order moments model[J]. Powder Technology, 2016, 302: 21-32.
[4]RAZZAK S A, AGARWAl K, ZHU JX, et al. Numerical investigation on the hydrodynamics of an LSCFB riser[J].Powder Technology, 2008, 188(1): 42-51.
[5]ESCUDIÉ R, EPSTEIN N, GRACE J R, et al. Effect of particle shape on liquid-fluidized beds of binary (and ternary) solids mixtures: segregation vs. mixing[J]. Chemical Engineering Science, 2006, 61(5): 1528-1539.
[6]ZHAO Y, XU L, UMBANHOWAR P B, et al. Discrete element simulation of cylindrical particles using super-ellipsoids[J]. Particuology, 2019, 46: 55-66.
[7]MA H, XU L, ZHAO Y. CFD-DEM simulation of fluidization of rod-like particles in a fluidized bed[J]. Powder Technology, 2017, 314: 355-366.
[8]NING Z, BOEREFIJIN R, GHADIRI M, et al. Distinct element simulation of impact breakage of lactose agglomerates[J]. Advanced Powder Technology, 1997, 8(1): 15-37.
[9]HOPKINS M A. Polyhedra faster than spheres[J]. Engineering Computations, 2014, 31(3): 567-583.
[10]KODAM M, BHARADWAJ R, CURTIS J, et al. Cylindrical object contact detection for use in discrete element method simulations. part I: contact detection algorithms[J]. Chemical Engineering Science, 2010, 65(22): 5852-5862.
[11]LU G, THIR J R, MÜLLER CR. Discrete element models for non-spherical particle systems: from theoretical developments to applications[J]. Chemical Engineering Science, 2015, 127: 425-465.
[12]ZHONG W, YUA, LIU X, et al. DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications[J]. Powder Technology, 2016, 302: 108-152.
[13]MA H, ZHAO Y, CHENG Y. CFD-DEM modeling of rod-like particles in a fluidized bed with complex geometry[J]. Powder Technology, 2019, 344(25): 673-683.
[14]CAMPBELL C S. Elastic granular flows of ellipsoidal particles[J]. Physics of Fluids, 2011, 23(1): 65-86.
[15]REN B, ZHONG W, CHEN Y, et al. CFD-DEM simulation of spouting of corn-shaped particles[J]. Particuology, 2012, 10(5): 562-572.
[16]LIU Z, ZHAO Y. Multi-super-ellipsoid model for non-spherical particles in DEM simulation[J]. Powder Technology, 2020, 361(12): 190-202.
[17]庆选, 张琳, 胡爱萍. 高炉冷却壁冷却水管内液固两相流的数值模拟[J]. 铸造技术, 2009, 30(2): 222-227.
[18]GAN J Q, YU A B, ZHOU Z Y. DEM simulation on the packing of fine ellipsoids[J]. Chemical Engineering Science, 2016, 156(30): 64-76.
[19]GAN J Q , ZHOU Z Y, YU A B. Structure analysis on the packing of ellipsoids under one-dimensional vibration and periodic boundary conditions[J]. Powder Technology, 2018, 335(10): 327-333.
[20]SHOKRI R, GHAEMI S, NOBES D S, et al. Investigation of particle-laden turbulent pipe flow at high-reynolds-number using particle image/tracking velocimetry (PIV/PTV)[J]. International Journal of Multiphase Flow, 2017, 89: 136-149.
[21]丁姗姗, 卢春喜, 王德武. 耦合流化床反应器提升管段颗粒速度及滑落的研究[J]. 石油炼制与化工, 2008, 39(12): 33-38.