ISSN 1008-5548

CN 37-1316/TU

2021年27卷  第5期
<返回第5期

约束型活动挡板对滚筒内特定二元颗粒混合过程的影响

Influence of constrained moving baffle on particle mixing in rotating drum

秦德越1, 荣文杰1,2,李宝宽1

(1. 东北大学冶金学院, 辽宁沈阳110819;2. 矿冶过程自动控制技术国家重点实验室, 北京102628)


DOI:10.13732/j.issn.1008-5548.2021.05.011

收稿日期: 2021-02-21,修回日期:2021-03-23,在线出版时间:2021-08-16 16:08。

基金项目:国家自然科学基金项目, 编号: 51934002; 矿冶过程自动控制技术国家重点实验室开放基金项目, 编号: BGRIMM-KZSKL-2020-10。

第一作者简介:秦德越(1998—),男,硕士研究生,研究方向为颗粒动力学。E-mail:qdy1998@126.com。

通信作者简介:李宝宽(1963—),男,教授,博士生导师,研究方向为气固多相反应及模型化。E-mail:libk@smm.neu.edu.cn。


摘要:为了改善颗粒的混合效果,提出在滚筒内增设自由型活动挡板和约束型挡板的方案,利用自行设计的实验装置探究不同滚筒转速下挡板形状、挡板尺寸、约束绳长度和约束绳弹性对颗粒混合的影响,并根据混合指数指标来判别不同变量条件下不同直径颗粒的混合效果。结果表明:当滚筒转速为30 r/min时,自由型活动挡板与约束型活动挡板均起到促进颗粒混合的作用。改变挡板形状,正方形挡板起到的混合效果最明显。以约束绳的弹性为变量时,非弹性约束绳情况下的颗粒混合效果较好。当转速提高至60 r/min,只有长度为80 mm的十字形约束型活动挡板对滚筒内颗粒混合起到促进作用。

关键词:滚筒;约束型活动挡板;转速;颗粒混合

Abstract:In order to improve the mixing effect of particles,this paper proposed to add free moving baffle and constrained moving baffle in self-designed rotating drum. The effects of baffle shape,baffle size,restrained rope length and restrained rope elasticity on the mixing of particles at different rotational speeds were investigated. The intensity of segregation was used to determine the mixing effect of binary particles. The results show that both the free moving baffle and the constrained moving baffle promote the particle mixing when the rotational speed is 30 r/min. In the experiment of changing the shape of the baffle,it is found that the square baffle play the most obvious mixing effect. The particle mixing effect is better in the case of non-elastic restrained rope than elastic one. When the rotational speed increase to 60 r/min,it is found that only the 80 mm cross-shaped constrained moving baffle promotes the mixing of particles in the rotating drum.

Keywords:rotating drum; constrained moving baffle; rotational speed; particle mixing


参考文献(References):

[1]房启家. 某复杂难选赤褐铁矿磁化焙烧分选试验研究[J]. 现代矿业, 2020, 36(4): 106-109.

[2]徐颖, 吴家正, 张亨伟, 等. 红外滚筒干燥机内颗粒合的模拟研究[J]. 节能技术, 2018, 36(2): 5-10.

[3]SANTOS D A, DUARTE C R, BARROZO M A S. Segregation phenomenon in a rotary drum: experimental study and CFDsimulation[J]. Powder Technology, 2016, 294: 1-10.

[4]JIANG S Q, YE Y X, HE M X, et al. Mixing uniformity of irregular sand and gravel materials in a rotating drum with determination of contact model parameters[J]. Powder Technology, 2019, 354: 377-391.

[5]RONG W J, LI B K, FENG Y Q, et al. Numerical analysis of size-induced particle segregation in rotating drums based on Eulerian continuum approach[J]. Powder Technology, 2020, 376: 80-92.

[6]PEREIRA G G, SINNOTT M D, CLEARY P W, et al. Insights from simulations into mechanisms for density segregation of granular mixtures in rotating cylinders[J]. Granular Matter, 2011, 13(1): 53-74.

[7]BIAN X L, WANG G Q, WANG H D, et al. Effect of lifters and mill speed on particle behaviour, torque, and power consumption of a tumbling ball mill: experimental study and DEM simulation[J]. Minerals Engineering Journal, 2017, 105: 22-35.

[8]张立栋, 韦庆文, 王擎. 回转干馏炉内挡板形状对二元颗粒运动混合的影响[J]. 浙江大学学报(工学版), 2018, 52(8): 117-125.

[9]ZHANG L D, MA J, WANG Z C, et al. Effect of moving baffle on average velocity and mixing of binary particles in rotating drums[J]. Journal of Central South University, 2020, 27(2): 478-489.

[10]ZHOU Z X, LI J H, ZHOU J Z, et al. Enhancing mixing of cohesive particles by baffles in a rotary drum[J]. Particuology, 2016, 25: 104-110.

[11]JIANG M Q, ZHAO Y Z, LIU G S, et al. Enhancing mixing of particles by baffles in a rotating drum mixer[J]. Particuology, 2011, 9(3): 270-278.

[12]YU F H, ZHOU G Z, XU J, et al. Enhanced axial mixing of rotating drums with alternately arranged baffles[J]. Powder Technology, 2015, 286: 276-287.

[13]荣文杰, 秦德越, 李宝宽, 等.滚筒内颗粒混合过程的实验研究[J]. 东北大学学报(自然科学版), 2020, 42(1): 49-54.

[14]张紫薇, 葛良, 桂南, 等. 转速对三维滚筒内颗粒混合特性的影响[J]. 中国科学院大学学报, 2017, 34(2): 218-225.

[15]苏天一. 滚筒中二元颗粒混合影响因素实验与模拟研究[D]. 沈阳: 东北大学, 2014.