ISSN 1008-5548

CN 37-1316/TU

2021年27卷  第5期
<返回第5期

MAX相高温吸波材料的研究进展

Research progress of MAX phase high temperature absorbing materials

郭 阳a, 张雪峰b, 陈 敏b, 李会容a

(攀枝花学院a. 电气信息工程学院; b. 钒钛学院, 四川攀枝花617000)


DOI:10.13732/j.issn.1008-5548.2021.05.007

收稿日期: 2020-03-10,修回日期:2020-03-22,在线出版时间:2021-08-17 08:42。

基金项目:四川省应用基础重点项目,编号:2019YJ0688。

第一作者简介:郭阳(1989—),男,博士,特聘副教授,研究方向为吸波材料。E-mail:guoyangchn@126.com。


摘要:总结三元层状化合物(Mn+1AXn,MAX)的特点,阐述MAX相金属陶瓷材料在高温微波吸收领域应用的现状、制备工艺的优化、改性和复合化设计等对其电磁吸波性能影响与机理。指出MAX相材料的制备工艺和高温抗氧化性能等需进一步优化提升,认为MAX相高温吸波材料的理论研究、多频兼容吸波材料制备和MAX相高温超材料设计研究等是本领域研究重点。

关键词:三元层状化合物;吸波材料;耐高温;改性;复合化

Abstract:It is summarized the characteristics of the layered ternary compound( Mn+1AXn,MAX),focusing on the present situations of MAX phase cermet materials in the field of high-temperature microwave absorption. Furthermore,the emphasis was on clarifying the influence and mechanism of optimizing the preparation process,modification and composite design on the electromagnetic wave absorption performance of MAX phase materials. It is necessary to optimize the preparation process and high temperature oxidation resistance of MAX phase materials. Simultaneously, it is believed that the theoretical research of MAX-phase high-temperature absorbing materials,the preparation of multi-frequency compatible absorbing materials,and the design of MAX-phase high-temperature metamaterials are new trends in this field.

Keywords:layered ternary compounds; microwave absorbing materials; high temperature resistance; modification; compounding


参考文献(References):

[1]LIU J, CAO M S, LUO Q, et al. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22615-22622.

[2]LI M, YIN X, ZHENG G, et al. High-temperature dielectric and microwave absorption properties of Si3N4-SiC/SiO2 composite ceramics[J]. Journal of Materials Science, 2015, 50(3): 1478-1487.

[3]桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版, 2013.

[4]TAN Y, LUO H, ZHANG H, et al. High-temperature electromagnetic interference shielding of layered Ti3AlC2 ceramics[J]. Scripta Materialia, 2017, 134: 47-51.

[5]ALI M, HOSSAIN M, ISLAM A, et al. Ternary boride Hf3PB4: insights into the physical properties of the hardest possible boride MAX phase[J]. Journal of Alloys and Compounds, 2021, 857: 158-264.

[6]ALI M, HOSSAIN M, UDDIN M, et al. Physical properties of new MAX phase borides M2SB (M=Zr, Hf and Nb) in comparison with conventional MAX phase carbides M2SC (M=Zr, Hf and Nb): comprehensive insights[J]. Journal of Materials Research and Technology, 2021, 11: 1000-1018.

[7]ZHANG Z, DUAN X, JIA D, et al. On the formation mechanisms and properties of MAX phases: a review[J]. Journal of the European Ceramic Society, 2021.

[8]CHING W Y, MO Y, ARYAL S, et al. Intrinsic mechanical properties of 20 MAX-phase compounds[J]. Journal of the American Ceramic Society, 2013, 96(7): 2292-2297.

[9]QING Y, ZHOU W, LUO F, et al. Titanium carbide (MXene) nanosheets as promising microwave absorbers[J]. Ceramics International, 2016, 42(14): 16412-16416.

[10]毛克祥, 程海斌, 官建国, 等. 纳米材料在航天领域的应用与发展[J]. 中国粉体技术, 2006, 23(6): 39-43.

[11]ZHANG Y, WEN J, ZHANG L, et al. High antioxidant lamellar structure Cr2AlC: dielectric and microwave absorption properties in X band[J]. Journal of Alloys and Compounds, 2020, 869: 157896.

[12]SHI Y, LUO F, LIU Y, et al. Preparation and microwave absorption properties of Ti3AlC2 synthesized by pressureless sintering TiC/Ti/Al[J]. International Journal of Applied Ceramic Technology, 2015, 12: E172-E177.

[13]LI Z, WEI X, LUO F, et al. Microwave dielectric properties of Ti3SiC2 powders synthesized by solid state reaction[J]. Ceramics International, 2014, 40(1): 2545-2549.

[14]CHEN W, TANG J, SHI X, et al. Synthesis and formation mechanism of high-purity Ti3AlC2 powders by microwave sintering[J]. International Journal of Applied Ceramic Technology, 2020, 17(2): 778-789.

[15]LI Z, LUO F, HE C, et al. Improving the microwave dielectric properties of Ti3SiC2 powders by Al doping[J]. Journal of Alloys and Compounds, 2015, 618: 508-511.

[16]LI Z, YANG Z, ZHANG M, et al. Dielectric properties of Al-doped Ti3SiC2 as a novel microwave absorbing material[J]. Ceramics International, 2017, 43(1): 222-227.

[17]李智敏, 张茂林, 闫养希, 等. Al掺杂对Ti3SiC2陶瓷制备和性能的影响[J]. 稀有金属材料与工程,2017, 46(2): 468-472.

[18]LIU Y, LUO F, SU J, et al. Influence of oxidation on the dielectric and microwave absorption properties of the milled Ti3SiC2 powders[J]. Journal of Alloys and Compounds, 2015, 644: 404-410.

[19]LIU Y, LUO F, SU J, et al. Dielectric and microwave absorption properties of Ti3SiC2/cordierite composite ceramics oxidized at high temperature[J]. Journal of Alloys and Compounds, 2015, 632: 623-628.

[20]LIU Y, LI Y, LUO F, et al. Electromagnetic and microwave absorption properties of SiO2-coated Ti3SiC2 powders with higher oxidation resistance[J]. Journal of Alloys and Compounds, 2017, 715: 21-28.

[21]GEIM A K J S. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.

[22]CAO M S, CA I Y Z, HE P, et al. 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding[J]. Chemical Engineering Journal, 2019, 359: 1265-1302.

[23]ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TxMXene)[J]. Chemistry of Materials, 2017, 29(18): 7633-7644.

[24]HAN M, YIN X, WU H, et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band[J].ACS Applied Materials & Interfaces, 2016, 8(32): 21011-21019.

[25]SENGUPTA A, RAO B B, SHARMA N, et al. Comparative evaluation of MAX, MXene, NanoMAX, and NanoMAX-derived-MXene for microwave absorption and Li ion battery anode applications[J]. Nanoscale, 2020, 12(15): 8466-8476.

[26]LIU Y, LUO F, SU J, et al. Mechanical, dielectric, and microwave-absorption properties of alumina ceramic containing dispersed Ti3SiC2[J]. Journal of Electronic Materials, 2015, 44(3): 867-873.

[27]YAO P, QIAN Y, LI W, et al. Exploration of dielectric and microwave absorption properties of quaternary MAX phase ceramic (Cr2/3Ti1/3)3AlC2[J]. Ceramics International, 2020, 46(14): 22919-22926.

[28]SU J, ZHOU W, LIU Y, et al. Effect of Ti3SiC2 addition on microwave absorption property of Ti3SiC2/cordierite coatings[J]. Surface and Coatings Technology, 2015, 270: 39-46.

[29]WEN Q, ZHOU W, WANG Y, et al. Enhanced microwave absorption of plasma-sprayed Ti3SiC2/glass composite coatings[J]. Journal of Materials Science, 2017, 52(2): 832-842.