ISSN 1008-5548

CN 37-1316/TU

2021年27卷  第5期
<返回第5期

求解颗粒凝并与反弹的DSMC方法及应用

Development and verification of DSMC method for solving particle agglomeration and rebound

吴志豪, 凡凤仙, 胡晓红

(上海理工大学能源与动力工程学院, 上海200093)


DOI:10.13732/j.issn.1008-5548.2021.05.005

收稿日期: 2021-03-07,修回日期:2021-03-27,在线出版时间:2021-08-17 08:41。

基金项目:国家自然科学基金项目,编号:51976130。

第一作者简介:吴志豪(1995—),男,硕士研究生,研究方向为气固两相流数值模拟。E-mail:wzh15161170061@163.com。

通信作者简介:凡凤仙(1982—),女,博士,教授,博士生导师,研究方向为多相流动与传热。E-mail:fanfengxian@usst.edu.cn。


摘要:针对直接模拟蒙特卡洛(direct simulation Monte Carlo,DSMC)方法应用于气固两相流建模与模拟时,对颗粒碰撞后果的处理存在的不足,发展一种考虑颗粒凝并与反弹共存的DSMC方法,将其应用于声凝并数值模拟研究,并将数值模拟与实验结果进行对比分析,以验证模型的可靠性。结果表明:对颗粒碰撞后果全部处理为凝并时,数值模拟得到的声凝并后的颗粒粒径分布与实验结果差异显著,而当考虑颗粒碰撞后凝并与反弹共存时,则能够预测出与实验结果吻合良好的声凝并效果。

关键词:直接模拟蒙特卡洛方法;凝并;反弹;颗粒碰撞;气固两相流

Abstract:In view of the shortcomings of treating the consequence of collisions with the direct simulation Monte Carlo( DSMC)when modeling and simulating the gas-solid two-phase flow,a DSMC method considering the coexistence of agglomeration and rebound as inter-particle collision consequences was proposed. The proposed method was applied to numerical simulation of acoustic agglomeration,and the results predicted by numerical simulation were compared with the experimental data to validate the reliability of the proposed model. The results show that when considering that agglomeration is the consequence of all inter-particle collisions,the deviation between the particle size distribution after acoustic agglomeration predicted by the numerical simulation and the experimental data is obvious. However,when considering the coexistence of agglomeration and rebound as inter-particle collision consequences,good agreement between the numerical predictions and experimental results can be obtained.

Keywords:direct simulation Monte Carlo method; agglomeration; rebound; inter-particle collision; gas-solid two-phase flow


参考文献(References):

[1]CHEN MH, LU H F, JIN Y, et al. Experimental and numerical study on gas-solid two-phase flowthrough regulating valve ofpulverized coal flow[J]. Chemical Engineering Research and Design, 2020, 155: 1-11.

[2]SCHNEIDER H, VALENTINER S, VOROBIEV N, et al. Investigation on flow dynamics and temperatures of solid fuel particles in a gas-assisted oxy-fuel combustion chamber[J]. Fuel, 2021, 286(2): 119424.

[3]LEE Y J, PARK J H, SONG G S. Characterization of PM2.5 and gaseous emissions during combustion of ultra-clean biomass via dual-stage treatment[J]. Atmospheric Environment, 2018, 193: 168-176.

[4]ZHANG C, MA N, FAN F X, et al. Hygroscopic growth of aerosol particles consisted of oxalic acid and itsinternal mixture with ammonium sulfate for the relative humidity rangingfrom 80% to 99.5%[J]. Atmospheric Environment, 2021, 252: 118318.

[5]RITVANEN J, CHECHURIN Y, HYPPANEN T. Practical characterization and modeling method for macroscopic gas-solid flow in circulating fluidized bed[J]. Chemical Engineering Journal, 2020, 21: 127819.

[6]SHABANIAN J, CHAOUKI J. Effects of temperature, pressure, and interparticle forces on the hydrodynamics of a gas-solid fluidized bed[J]. Chemical Engineering Journal, 2017, 313: 580-590.

[7]TSUJI Y, TANAKA B, YONEMURA S. Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model)[J]. Powder Technology, 1998, 95(3): 254-264.

[8]FAN F X, YANG X F, KIM C N. Direct simulation of inhalable particle motion and collision in a standing wave field[J]. Journal of Mechanical Science and Technology, 2013, 27(6): 1707-1712.

[9]FEDE P, SIMONIN O. Direct simulation Monte-Carlo predictions of coarse elastic particle statistics in fully developed turbulent channel flows: comparison with deterministic discrete particle simulation results and moment closure assumptions[J]. International Journal of Multiphase Flow, 2018, 108: 25-41.

[10]HE Y X, ZHAO H B. Conservative particle weighting scheme for particle collision in gas-solid flows[J]. International Journal of Multiphase Flow, 2016, 83: 12-26.

[11]LI Y, GU W G, HE J P, et al. A new method for simulation aerosols Brownian coagulation based on finite active samples assumption[J]. Annalsof Nuclear Energy, 2018, 115: 534-541

[12]BHOI S, SARKAR D. Hybrid finite volume and Monte Carlo method for solving multi-dimensional population balance equations in crystallization processes[J]. Chemical Engineering Science, 2020, 217: 11551.

[13]ZHAO H B, ZHENG C G, XU M H. Muti-Monte Carlo method for particle coagulation: description and validation[J]. Applied Mathematics and Computation, 2005, 167(2): 1383-1399.

[14]凡凤仙, 袁竹林, 赵兵, 等. 驻波声场中细微颗粒凝并的数值模拟[J]. 燃烧科学与技术, 2008, 14(3): 253-258.

[15]张明俊, 凡凤仙. 细颗粒物的声凝并数值模拟研究进展[J]. 化工进展, 2012, 31(8): 1671-1676.

[16]FAN F X, ZAHNG M J, PENG Z B, et al. Direct simulation Monte Carlo method for acoustic agglomeration under standing wave condition[J]. Aerosol and Air Quality Research, 2017, 17(4): 1073-1083.

[17]SGROTT O L, SOMMERFELD M. Influence of inter-particle collision and agglomeration on cyclone performance and collection efficiency[J]. The Canadian Journal of Chemical Engineering, 2018, 97(2): 511-522.

[18]屈广宁, 凡凤仙, 张斯宏, 等. 驻波声场中单分散细颗粒的相互作用特性[J]. 物理学报, 2020, 69(6): 064704.

[19]FAN F X, XU X, ZHANG S H, et al. Modeling of particle interaction dynamics in standing wave acoustic field[J]. Aerosol Science and Technology, 2019, 53(10): 1204-1216.

[20]DONG S Z, LIPKENS B, CAMERON T M. The effects of orthokinetic collision, acoustic wake, and gravity on acoustic agglomeration of polydisperse aerosols[J]. Journal of Aerosol Science, 2006, 37(4): 540-553.

[21]SONG L. Modeling of acoustic agglomeration of fine aerosol particles[D]. State College: Pennsylvania State University, 1990.

[22]SHANG X P, WAN M P, NG B F, et al. A CFD-sectional algorithm for population balance equation coupled with multi-dimensional flow dynamics[J]. Powder Technology, 2020, 362: 111-125.

[23]ZHANG G X, ZHANG L L, WANG J Q, et al. Improving acoustic agglomeration efficiency by addition of sprayedliquid droplets[J]. Powder Technology, 2017, 317(3): 181-188.