ISSN 1008-5548

CN 37-1316/TU

2021年27卷  第5期
<返回第5期

撞击流中颗粒运动行为的CFD-DEM模拟

CFD-DEM simulation of particle motion behavior in impinging stream

李东晖, 柳 波, 张晓仪, 刘镇业

(中南大学机电工程学院, 湖南长沙410083)


DOI:10.13732/j.issn.1008-5548.2021.05.002

收稿日期: 2021-02-08,修回日期:2021-02-28,在线出版时间:2021-08-17 13:30。

基金项目:国家重点研发计划项目,编号:2018YFB2001300。

第一作者简介:李东晖(1995—),男,硕士研究生,研究方向为气固两相流混合特性。E-mail:ldh1907@163.com。

通信作者简介:柳波(1968—),男,博士,副教授,硕士生导师,研究方向为气力输送技术。E-mail:liuboyh@126.com。


摘要:为了研究撞击流反应器内非同种颗粒相间的运动扩散规律,考虑颗粒的旋转及碰撞,建立三维欧拉-拉格朗日模型,结合计算流体力学和离散单元法模拟非同种颗粒相在气固两相撞击流场合下的颗粒运动扩散状态,分析颗粒在撞击流流场中的运动轨迹以及不同气相入口速度及喷嘴间距条件下的颗粒间相互碰撞次数的变化。结果表明:在同等条件下,喷嘴间距增大,2种颗粒之间的碰撞次数呈先增大后减小的趋势,在喷嘴间距与喷嘴直径之比为4的时候达到最大;气相速度增大对颗粒在撞击区的碰撞次数影响不大。

关键词:撞击流;离散单元法;颗粒碰撞;气固两相流

Abstract:In order to study the law of movement and diffusion between different particle phases in an impinging stream reactor,considering the rotation and collision of particles,a three-dimensional Euler-Lagrangian model was established,and a combination of computational fluid dynamics and discrete element method was used to simulate the particle movement and diffusion state of two kinds of particle phase in the gas-solid two-phase collision stream. The trajectory of particles in the impinging flow field and the changes in the number of collisions between particles under different gas inlet speeds and nozzle distance conditions were analyzed. The results show that under the same conditions,with the nozzle distance increasing,and the change trend of the number of collisions between the two particles increases and then decreases. It reaches the maximum when the ratio of the nozzle spacing to the nozzle diameter is 4 and the increasing in gas velocity has little effect on the number of particle collisions in the impact zone.

Keywords:impinging stream; discrete element method; particle collision; gas-sold particle flow


参考文献(References):

[1]ELPERIN, IT. Heat and mass transfer in opposing currents[J]. Journal of Engineering Physics, 1961,6(6): 62-68.

[2]WU Y, LI Q, LI F. Desulfurization in the gas-continuous impinging stream gas-liquid reactor[J]. Chemical Engineering Science, 2007, 62(6): 1814-1824.

[3]LI Y, LI F, QI H. Numerical and experimental investigation of the effects of impinging streams to enhance Ca-based sorbent capture of SO2[J]. Chemical Engineering Journal, 2012, 204/205/206(1): 188-197.

[4]WU H, PAN D, XIONG G, et al. The abatement of fine particles from desulfurized flue gas by heterogeneous vapor condensation coupling two impinging streams[J]. Chemical Engineering & Processing, 2016, 108(1): 174-180.

[5]ZHOU C, WANG Y, DU L, et al. Preparation of highly dispersed SiO2 nanoparticles using continuous gas-based impinging streams[J]. Chemical Engineering Journal, 2017, 327(1): 734-742.

[6]NI J, LIANG Q, ZHOU Z, et al. Numerical and experimental investigations on gas-particle flow behaviors of the opposed multi-burner gasifier[J]. Energy Conversion & Management, 2009, 50(12): 3035-3044.

[7]XU J, ZHAO H, DAI Z, et al. Numerical simulation of opposed multi-burner gasifier under different coal loading ratio[J]. Fuel, 2016, 174(1): 97-106.

[8]BERTRAND M, LAMARQUE N, LEBAIGUE O, et al. Micromixingcharacterisation in rapid mixing devices by chemical methods and LES modelling[J]. Chemical Engineering Journal, 2016, 283(1): 462-475.

[9]BRITO M S C A, DIAS M M, SANTOS R J, et al. Fully resolved modelling and simulation of micromixing in confined impinging jets[J]. Chemical Engineering Science, 2020, 211(1): 115299.

[10]KHOMWACHIRAKUL P, DEVAHASTIN S, SWASDISEVI T, et al. Simulation of flow and drying characteristics of high-moisture particles in an impinging stream dryer via CFD-DEM[J]. Drying Technology, 2016, 34(4): 403-419.

[11]THUWAPANICHAYANAN R, KUMKLAM P, SOPONRONNARIT S, et al. Mathematical model and energy utilization evaluation of a coaxial impinging stream drying system for parboiled paddy[J]. Drying Technology, 2020, 1(1): 1-17.

[12]WU D, LI J, LIU Z, et al. Numerical study of particle behaviorin laminar axisymmetric opposed-jet flows[J]. Powder Technology, 2015, 270(1): 176-184.

[13]LIU X, YUE S, LU L, et al. Simulations of an asymmetric gas-solid two-phase impinging stream reactor[J]. Numerical Heat Transfer Part A Applications, 2018, 74(2): 1032-1051.

[14]LIU X, CHEN Y. Analysis of gas-particle flow characteristics in impinging streams[J]. Chemical Engineering and Processing: Process Intensification, 2014, 79(1): 14-22.

[15]SUN W, ZHONG W. LES-DPM simulation of turbulent gas-particle flow on opposed round jets[J]. Powder Technology, 2015, 270(1): 302-311.

[16]杜敏, 周宾. 气固两相撞击流内颗粒运动规律的实验研究[J]. 热能动力工程, 2013, 28(6): 611-615.

[17]杜敏, 陈威, 王助良, 等. 撞击流中颗粒旋转特性[J]. 化工学报, 2016, 67(5): 1878-1883.

[18]LI J, WANG H, XIONG Y, et al. Experimental investigation on turbulence modification in a dilute gas-particle axisymmetric opposed jets flow[J]. Chemical Engineering Journal, 2016, 286(1): 76-90.

[19]岑可法, 樊建人. 工程气固多相流动的理论及计算[M]. 杭州: 浙江大学出版社, 1990: 319-335.

[20]GIDASPOW D. Multiphase flow and fluidization: continuum and kinetic theory description[M]. Boston: Academic Press, 1994.

[21]TSUJI Y, OSHIMA T, MORIKAWA Y. Numerical simulation on pneumatic conveying in horizontal pipe[J]. KONA Powder Sci Tech Japan, 1985, 3(1): 38-51.

[22]MINDLIN R D, DERESIEWICZ H. Elastic spheres in contact under varying oblique forces[J]. J Appl Mech Asme, 1953, 20(3): 327-344.

[23]TSUJI Y, TANAKA T, ISHIDA T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J]. Powder Technology, 1992, 71(3): 239-250.

[24]胡国明. 颗粒系统的离散元素法分析仿真[M]. 武汉: 武汉理工大学出版社, 2010: 147.