英志刚1,雷一鸣2,乔 林1,李金凯2,刘宗明2
(1. 山东创伟外墙保温材料有限公司,山东 济南 250013;2. 济南大学 材料科学与工程学院,山东 济南 250022)
DOI:10.13732/j.issn.1008-5548.2021.06.013
收稿日期: 2021-07-03,修回日期:2021-10-02,在线出版时间:2021-10-25 16:59。
基金项目:国家重点研发计划基金项目,编号:2017YFE0120900。
第一作者简介:英志刚(1980—),男,研究方向为新型保温材料。E-mail: 122404565@qq.com。
摘要:为了研究粉煤灰掺量(质量分数,下同)、铝粉掺量、氢氧化钠掺量、水胶比(水的质量与水泥、粉煤灰质量和的比)、水温等因素对免蒸压粉煤灰加气混凝土抗压强度和密度的影响,采用L16(45)的正交设计实验进行研究。结果表明:铝粉掺量是影响免蒸压粉煤灰加气混凝土的抗压强度和密度的首要因素,粉煤灰掺量在40%~55%之间递增没有造成抗压强度的明显降低。水温和水胶比分别是加气混凝土密度和抗压强度的次要因素。依据极差分析和综合平衡分析得出最优实验配比为7号方案A2B3C4D1E2,抗压强度和密度分别为1.2 MPa,672.16 kg/m3。使用全自动压汞仪测试孔径分布,发现强度最大的1号方案具备最佳的孔径分布;使用扫描电子显微镜,观察到嵌入在加气混凝土断裂面中起填充作用的球状粉煤灰颗粒。
关键词:正交分析;粉煤灰加气混凝土;抗压强度;密度
Abstract:In order to study the effects of fly ash content,aluminum powder content,sodium hydroxide content,water material ratio(the proportion of water quality to quality sum of cement and fly ash),water temperature and other factors on the compressive strength and bulk density of autoclaved fly ash aerated concrete,L16(45) orthogonal design experiment was adopted. The results show that the content of aluminum powder is the primary factor affecting the compressive strength and bulk density of the non-autoclaved fly ash aerated concrete,and the increase of the content of fly ash between 40% and 55% does not significantly reduce the compressive strength. Water temperature and water-material ratio are not the secondary factors of bulk density and compressive strength of aerated concrete. According to range analysis and comprehensive equilibrium analysis,the optimal experimental ratio of this orthogonal experiment is A2B3C4D1E2,the compressive strength and bulk density are 1. 2 MPa and 672. 16 kg/m3 respectively. Using automatic mercury porosimeter to test the pore size distribution,it is found that scheme 1 with the greatest strength has the best pore size distribution. Using scanning electron microscope(SEM),spherical fly ash particles embedded in the fracture surface of aerated concrete were observed.
Keywords:orthogonal analysis; fly ash aerated concrete; compressive strength; density
参考文献(References):
[1]朴春爱, 权宗刚, 唐玉娇. 发泡混凝土微结构的研究进展[J]. 硅酸盐通报, 2020, 39(9): 2699-2705.
[2]孙正, 周卫兵, 朱教群, 等. 改善免蒸压加气混凝土力学性能的研究[J]. 建材世界, 2012, 33(6): 8-11.
[3]王美娜, 姬军, 马宁, 等. 免蒸压加气混凝土的研究进展[J]. 混凝土, 2021, 43(1): 139-142.
[4]JIANG X J, YUN Y, HU Z H. Development of non-autoclaved aerated concrete by alkali activated phosphorus slag[J]. Advanced Materials Research, 2011, 250: 1147-1152.
[5]姜玉凤, 陈跃, 李明, 等. 碱激发钢渣微粉免蒸压加气混凝土的制备研究[J]. 硅酸盐通报, 2020, 39(8): 2574-2580.
[6]LI F X, CHEN Y Z, YU Q J, et al. Utilization of desulfuration residues in non-autoclaved aerated concrete[J]. Advanced Materials Research, 2011, 250: 707-710.
[7]续入银, 杜美利, 王水利, 等. 煤矸石免蒸压加气混凝土研究[C]//中国科学技术协会、陕西省人民政府第十八届中国科协年会. 煤炭清洁高效利用学术论坛论文集: 2016年卷. 西安: 中国科学技术协会学会学术部, 2016: 71-75.
[8]EBEADU A, SHRESTHAK C, SAEED H. Development of high-strength lightweight non-autoclaved aerated concrete[J]. Proceedings of The Institution of Civil Engineers-structures and Buildings, 2020, 173(10): 705-714.
[9]KERIENE J, KLIGYS M, LAUKAITIS A, et al. The influence of multi-walled carbon nanotubes additive on properties of non-autoclaved and autoclaved aerated concretes[J]. Construction and Building Materials, 2013, 49: 527-535.
[10]相秋迪, 缪宏伟, 沙绍通, 等. 减水剂对砂加气混凝土性能的影响[J]. 江苏建材, 2020, 30(2): 37-40.
[11]SVINTSOVA P, SHCHESNYAK E L, GALISHNIKOYA V V, et al. Effect of nano-modified additives on properties of concrete mixtures during winter season[J]. Construction and Building Materials, 2020, 237: 117527.
[12]张元元. 新型加气混凝土添加剂在西安应市[J]. 硅酸盐建筑制品, 1992, 20(6): 47.
[13]THOMAS J A G. Fibre-air-entrained concrete[J]. Composites, 1972, 3(2): 71-74.
[14]ZHAO M L,ZHAO M S,CHEN M H, et al. An experimental study on strength and toughness of steel fiber reinforced expanded-shale lightweight concrete[J]. Construction and Building Materials, 2018, 183: 493-501.
[15]SAITO T, DEMURA K. Compressive and flexural behavior of fiber-reinforced porous concretes using polymer for cement modifier[J]. Cement Science and Concrete Technology, 2011, 65(1): 470-476.
[16]张波. 自保温型加气混凝土砌块的研究[D]. 济南: 济南大学, 2014.
[17]尹丽子. 应用统计分析[M]. 北京: 北京大学出版社, 2020: 100-130.
[18]耿静亚, 孔佑方. 孔特性对力学性能的影响[J]. 技术与市场, 2017, 24(8): 90-91.
[19]杜旭斌, 朱显鸽. 掺粉煤灰碾压混凝土强度同抗冻性相关性研究[J]. 当代化工, 2021, 50(7): 1563-1566.
[20]HASHMI A F, SHARIQ M, BAQI A. An investigation into age-dependent strength, elastic modulus and deflection of low calcium fly ash concrete for sustainable construction[J]. Construction and Building Materials, 2021, 283: 122772.