吴廉洁1,2,叶楚雄1,欧阳高尚1,2,王劲松1,2, 易明明1
(1. 南华大学 土木工程学院,湖南 衡阳 421000;2. 南华大学长三角(诸暨)研究院,浙江 绍兴 312000)
DOI:10.13732/j.issn.1008-5548.2021.06.009
收稿日期: 2021-03-25,修回日期:2021-06-09,在线出版时间:2021-10-18 17:10。
基金项目:湖南省研究生科研创新项目,编号:CX20200939。
第一作者简介:吴廉洁(1996—),男,硕士研究生,研究方向为新型绿色胶凝材料。E-mail: 1714915877@qq.com。
通信作者简介:王劲松(1972—),博士,教授,博士生导师,研究方向为环境功能材料。E-mail: xhwjs@163.com。
摘要:通过复掺不同质量比的粗细2种原材料,制备不同粒径分布的偏高岭土,制备偏高岭土基地质聚合物;采用流变学和流动度测试方法,结合凝结时间测试和力学性能测试,研究原材料粒径对碱激发偏高岭土基地质聚合物的工作性能和力学强度的影响;采用形貌分析、等温吸附和傅里叶红外光谱等表征手段,对地聚物固化体的断面形貌、孔隙结构和反应程度进行表征。结果表明:偏高岭土粒径的增大可以明显提高地聚物净浆的流动性能,但同时显著延长了浆体的凝结时间。原材料粒径的增大使得地聚物固化体1 d的力学强度单调递减;固化体的3、7 d的力学强度没有明显的变化。
关键词:粒径;地质聚合物;流动性;力学性能
Abstract:In this paper,metakaolin with different particle size distribution was prepared by mixing two kinds of raw materials with different mass ratios,then the metakaolin base polymer was prepared. Rheological and fluidity testing methods,combined with setting time test and mechanical property test,were used to study the influence of raw material particle size on the working properties and mechanical strength of alkali-excited metakaolin base polymer. Finally,morphology analysis,isothermal adsorption and Fourier transform infrared spectroscopy(FTIR) were used to characterize the cross-section morphology,pore structure and reaction degree of the geopolymer. The results show that the increase of metakaolin particle size can significantly improve the flow performance of the geopolymer slurry,but also significantly prolong the setting time of the slurry. With the increase of raw material particle size,the mechanical strength of geopolymer solidified body decreases monotonically for 1 d. The mechanical strength of the solidified body at 3 and 7 days did not show obvious change rule.
Keywords:particle size; geopolymers; fluidity; mechanical properties
参考文献(References):
[1]王克俭. 地聚合物化学及应用[M]. 北京: 国防工业出版社, 2011: 1-10.
[2]PUERTAS F, VARGA C, ALONSO M M. Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution[J]. Cement and Concrete Composites, 2014, 53: 279-288.
[3]NATH S K, KUMAR S. Role of particle fineness on engineering properties and microstructure of fly ash derived geopolymer[J]. Construction and Building Materials, 2020, 233: 117294.
[4]MANDAL A K, SINHA O P. Effect of bottom ash fineness on properties of red mud geopolymer[J]. The Journal of Solid Waste Technology and Management, 2017, 43(1): 26-35.
[5]吴蓬, 吕宪俊, 胡术刚, 等. 粒化高炉矿渣成分和粒径对活性的影响[J]. 硅酸盐通报, 2014, 33(10): 2572-2577.
[6]LEE N K, KIM E M, LEE H K. Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex[J]. Construction and Building Materials, 2016, 113: 264-272.
[7]李茂辉, 陈志杰. 某低活性酸性矿渣微粉的机械力化学效应研究[J]. 金属矿山, 2019(3): 200-203.
[8]RATTANASAK U, PANKHET K, CHINDAPRASIRT P. Effect of chemical admixtures on properties of high-calcium fly ash geopolymer[J]. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(3): 364-369.
[9]宋少民, 刘振兴, 范吉宝. 粉煤灰细度和掺量对胶凝材料需水行为的影响[J]. 混凝土, 2014(10): 70-71, 76.
[10]RAPHAELLE P, MARTIN C, RAPHAEL B. Influence of the initial water content in flash calcined metakaolin-based geopolymer[J]. Construction and Building Materials, 2019, 201: 421-429.
[11]CHINDAPRASIRT P, CHAREERAT T, HATANAKA S, et al. High-strength geopolymer using fine high-calcium fly ash[J]. Journal of Materials in Civil Engineering, 2011, 23(3): 264-270.
[12]ZHANG Z H, YAO X, ZHU H J, et al. Role of water in the synthesis of calcined kaolin-based geopolymer[J]. Applied Clay Science, 2009, 43(2): 218-223.
[13]OUYANG G S, WANG J S, WANG R, et al. Rheokinetics and fluidity modification of alkali activated ultrafine metakaolin based geopolymers[J]. Construction and Building Materials, 2020, 269: 121268.
[14]欧阳高尚, 王劲松, 董腾, 等. 三聚氰胺减水剂对碱激发超细偏高岭土基地质聚合物流动性和力学性能的影响[J]. 硅酸盐通报, 2020, 39(6): 1828-1834.
[15]史铁钧,吴德峰. 高分子流变学基础[M]. 北京: 化学工业出版社, 2008: 27-33.
[16]张庆松, 李恒天, 李召峰, 等. 不同粒径组合对煤矸石基充填材料性能的影响[J]. 金属矿山, 2020(1): 73-80.
[17]YANG Z, HOU K P, GUO T T. Study on the effects of different water-cement ratios on the flow pattern properties of cement grouts[J]. Applied Mechanics and Materials, 2011, 149: 1264-1267.
[18]吴中伟,廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999: 50-200.
[19]KUMAR S, KRISTALY F, MUCSI G. Geopolymerisation behaviour of size fractioned fly ash[J]. Advanced Powder Technology, 2015, 26(1): 24-30.
[20]贾德昌. 无机聚合物及其复合材料[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014: 75-84.
[21]CHEN X, ZHOU M K, GE X X, et al. Study on the microstructure of metakaolin-based geopolymer enhanced by polyacrylate[J]. Journal of the Ceramic Society of Japan, 2019, 127(3): 165-172.
[22]彭晖, 崔潮, 蔡春声, 等. 激发剂浓度对偏高岭土基地聚物性能的影响机制[J]. 复合材料学报, 2016, 33(12): 2952-2960.