许潇雨,李 丽,王建荣,段广彬
(济南大学 材料科学与工程学院,山东 济南 250022)
DOI:10.13732/j.issn.1008-5548.2021.06.008
收稿日期: 2021-03-25,修回日期:2021-07-06,在线出版时间:2021-10-18 16:40。
基金项目:国家自然科学基金项目,编号:51501072。
第一作者简介:许潇雨(1991—),女,硕士,助理实验师,研究方向为材料腐蚀及其控制。E-mail:mse_xuxy@ujn.edu.cn。
通信作者简介:段广彬(1983—),男,博士,教授,研究方向为建筑科学与工程。E-mail:mse_duangb@ujn.edu.cn。
摘要:采用化学原位聚合法制备纳米级聚吡咯(PPy),对硅烷偶联剂KH-792进行掺杂改性,以提高硅烷膜的耐蚀性。通过电化学阻抗谱(EIS)确定聚吡咯对于硅烷溶液的最佳掺杂量,即得到耐蚀性最佳的改性硅烷膜,将此改性硅烷膜浸泡腐蚀不同时间,并与相同腐蚀条件下的单一硅烷膜比较,通过电化学阻抗谱及等效拟合电路数据,探讨改性硅烷膜的耐蚀机理。结果表明,PPy改性KH-792硅烷膜与单一KH-792硅烷膜相比,耐蚀性明显提高,约为单一硅烷膜的4倍。改性硅烷膜在腐蚀初期的耐蚀性主要来自膜层的机械屏蔽作用,腐蚀中后期则是聚吡咯在基片表面形成了钝化膜。
关键词:纳米聚吡咯;硅烷膜;耐蚀性;电化学
Abstract:In this paper,KH-792 silane was modified by nanoscale polypyrrole prepared by chemical in-situ polymerization to improve the anticorrosion of silane films. The optimal doping amount of polypyrrole for silane solution was determined by electrochemical impedance spectroscopy(EIS),and the modified film with the best corrosion resistance was obtained. The corrosion resistance mechanism of the modified film was investigated by EIS and equivalent circuit fitting data,comparing with the single silane film under the same corrosion condition. The conclusion is that the corrosion resistance of modified film is significantly improved,about 4 times that of a single silane film. The initial corrosion resistanceof modified film is mainly due to the mechanical shielding effect,and the middle and later stage of corrosion resistance is due to the passivation film formed by polypyrrole.
Keywords:nano-polypyrrole; silane film; corrosion resistance; electrochemistry
参考文献(References):
[1]张焱琴, 杨丽霞, 谢鹏波.硅烷偶联剂在金属表面预处理中的应用研究进展[J]. 材料保护, 2017, 50(12): 67-73.
[2]刘佳, 姚光晔. 硅烷偶联剂的水解工艺研究[J]. 中国粉体技术, 2014, 20(4): 60-63.
[3]OWCZAREK E. Methods of modifying anticorrosive protective properties of silane films[J]. Acta Physica Polonica A, 2019, 135(2): 147-152.
[4]赵联, 黄锋, 宋燕利, 等. 热轧无头带钢磷化与硅烷化的涂装防护[J]. 电镀与涂饰, 2020, 39(16): 1084-1089.
[5]孙成军, 邓莲丽, 刘海峰, 等. 双硅型偶联剂的合成及防腐蚀性研究[J]. 有机硅材料, 2017, 31(2): 76-81.
[6]XIAN X, NAI C, LI L, et al. The formation process of Zr-doped silane film on carbon steel during immersing in Zr(NO3)4/silane mixed solutions[J]. Anti-corrosion Methods and Materials, 2017, 64(1): 1-9.
[7]ZHAO Y B, SHI L Q, CUI L Y, et al .Corrosion resistance of silane-modified hydroxyapatite films on degradable magnesium alloys[J]. Acta Metallurgica Sinica-English Letters, 2018, 31(2): 180-188.
[8]娄淑芳, 张亚昆, 李红玲, 等. 纳米CeO2改性有机硅烷转化膜的耐蚀性[J]. 材料保护, 2019, 52(9): 132-136.
[9]YAN B, WU Y, GUO L. Recent advances on polypyrroleelectroactuators[J]. Polymers, 2017, 9(9): 446.
[10]周健, 李宾, 袁晓, 等. 聚吡咯导电涂层的制备及其性能研究[J]. 功能材料, 2020, 51(7): 7051-7055.
[11]董虹星. 聚吡咯涂层的制备及其对多孔316不锈钢抗腐蚀性能的影响[J]. 材料保护, 2020, 53(5): 57-62.
[12]朱日龙, 李国希, 罗岳平. 聚吡咯膜对不锈钢腐蚀的防护机理研究[J]. 湖南大学学报 (自然科学版), 2014, 41(7): 108-112.
[13]KALENDOVA A, VESELY D, KOHL M, et al. Anticorrosion efficiency of zinc-filled epoxy coatings containing conducting polymers and pigments[J]. Progress in Organic Coatings, 2015, 78: 1-20.
[14]HERRASTI P, KULAK AN, BAVYKIN DV, et al. Electrodeposition of polypyrrole-titanate nanotube composites coatings and their corrosion resistance[J]. Electrochimica Acta, 2011, 56(3): 1323-1328.
[15]ZAREBAA. Nanocomposites on polypyrrole warp in protection metals against corrosion-an overview[J]. Polimery, 2021, 66(3): 169-174.
[16]周亚倩, 郝璐, 朱凯明, 等. 聚吡咯的合成及其在金属防腐蚀领域的应用[J]. 腐蚀科学与防护技术, 2018, 30(5): 557-562.
[17]曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002: 26-28,78-79.